

Lecture Notes in Computer Science 3429
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Eric Andres Guillaume Damiand
Pascal Lienhardt (Eds.)

Discrete Geometry
for Computer Imagery

12th International Conference, DGCI 2005
Poitiers, France, April 13-15, 2005
Proceedings

13

Volume Editors

Eric Andres
Guillaume Damiand
Pascal Lienhardt
Université de Poitiers, Laboratoire S.I.C.
Bât. SP2MI, Teleport 2, Bvd Marie et Pierre Curie, B.P. 30179
86962 Futuroscope Chasseneuil Cedex, France
E-mail: {andres, damiand, lienhardt}@sic.univ-poitiers.fr

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.4, I.3.5, G.2, I.6.8, F.2.1

ISSN 0302-9743
ISBN-10 3-540-25513-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25513-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11414292 06/3142 5 4 3 2 1 0

Preface

In 2005, the twelfth edition of the conference Discrete Geometry for Computer
Imagery was held in Poitiers, France, April 13–15, 2005. The conference was
organized by the laboratory SIC (“Signal, Image, Communications”) of the
University of Poitiers, Centre National de la Recherche Scientifique and the
Technical Committee 18 of the International Association for Pattern Recogni-
tion. DGCI 2005 was sponsored by the Faculty of Science, the University of
Poitiers, the Conseil Général de la Vienne and the Region of Poitou-Charentes.
The aim of the conference was to present recent advances in both theoretical
aspects and applications in discrete geometry.

This year’s conference was organized in combination with the 5th Workshop
on Graph- ased Representations in Pattern Recognition, April 11–13, 2005 also
organized in Poitiers. The workshop GbR aims at using graph-based structures in
image analysis. There is a strong connection between the community interested
in the GbR workshop and the discrete geometry community. For this reason, for
the first time, both the workshop and the DGCI conference were organized in
the same place, with a common session of four papers, two submitted to GbR
and two to DGCI.

The DGCI conference attracted again for this edition many excellent papers,
with 53 submitted papers from 21 countries. After careful reviewing by two and
sometimes three reviewers, 36 papers were accepted, from which 22 were selected
for oral presentation and 14 as posters. These contributions were regrouped into
topics: applications, discrete topology, discrete hierarchical geometry, discrete
tomography, object properties, recognition, and reconstruction, uncertain geom-
etry, and visualization.

The program was completed by invited lectures from internationally known
speakers: As first invited speaker we had Achille Braquelaire, who spoke about
2D images and planar maps. His contribution can be read in the GbR conference
proceedings, also published by LNCS 3434. As second invited speaker, Peter
Veerlaert spoke about uncertain geometry. Finally Jean-Pierre Guédon presented
the Mojette Transform.

Many people contributed to the renewed success of this conference and we
would like to thank them all, and in particular the authors who submitted papers
and the invited speakers for their contributions. A special thanks also to the
Steering Committee, and to the Program Committee whose members reviewed
so many papers in a very efficient way.

Finally, we thank all the participants and we hope that they enjoyed their
stay in Poitiers.

April 2005 Éric Andrès
Guillaume Damiand

Pascal Lienhardt

B

Organization

DGCI 2005 was organized by the Signal, Image, Communications Laboratory of
the University of Poitiers in France. The conference venue was the IFMI building
on the Futuroscope campus ground in Chasseneuil du Poitou. The conference
was sponsored by the International Association for Pattern Recognition (IAPR).

Conference Chairs

Éric Andres SIC, Poitiers, France
Guillaume Damiand SIC, Poitiers, France
Pascal Lienhardt SIC, Poitiers, France

Steering Committee

Gabriella Sanniti di Baja Italy
Achille Braquelaire France
Gunilla Borgefors Sweden
Jean-Marc Chassery France
Annick Montanvert France
Gabor Szekely Switzerland

Programme Committee

Reneta Barneva Gilles Bertrand Valentin E. Brimkov
David Coeurjolly Michel Couprie Leila De Floriani
Isabelle Debled-Rennesson Ulrich Eckhardt Oscar Figueiredo
Christophe Fiorio Atsushi Imiya Pieter Jonker
Ron Kimmel Nahum Kiryati Christer O. Kiselman
Walter G. Kropatsch Jacques-Olivier Lachaud Gregoire Malandain
Remy Malgouyres Serge Miguet Ingela Nyström
Klette Reinh Pierre Soille Edouard Thiel

Table of Contents

Applications

Increasing Interconnection Network Connectivity for Reducing
Operator Complexity in Asynchronous Vision Systems

Valentin Gies, Thierry M. Bernard . 1

Geometric Robot Mapping
Rolf Lakaemper, Longin Jan Latecki, Xinyu Sun, Diedrich Wolter 11

Discrete Geometry Applied in Hard Real-Time Systems Validation
Gaëlle Largeteau, Dominique Geniet, Éric Andrès 23

Discrete Hierarchical Geometry

Hierarchical Watersheds Within the Combinatorial Pyramid Framework
Luc Brun, Myriam Mokhtari, Fernand Meyer . 34

Optimal Design of 2D/3D Hierarchical Content-Based Meshes for
Multimedia

Işil Celasun, Rupen Melkisetoğlu, A. Murat Tekalp 45

Receptive Fields for Generalized Map Pyramids: The Notion of
Generalized Orbit

Carine Grasset-Simon, Guillaume Damiand, Pascal Lienhardt 56

Resolution Pyramids on the FCC and BCC Grids
Robin Strand, Gunilla Borgefors . 68

Discrete Tomography

The Mojette Transform: The First Ten Years
JeanPierre Guédon, Nicolas Normand . 79

On the Stability of Reconstructing Lattice Sets from X-Rays Along
Two Directions

Andreas Alpers, Sara Brunetti . 92

Reconstruction of Decomposable Discrete Sets from Four Projections
Péter Balázs . 104

VIII Table of Contents

A Tomographical Characterization of L-Convex Polyominoes
Giusi Castiglione, Andrea Frosini, Antonio Restivo, Simone Rinaldi . . 115

Computerized Tomography with Digital Lines and Linear Programming
Fabien Feschet, Yan Gérard . 126

A Discrete Modulo N Projective Radon Transform for N × N Images
Andrew Kingston, Imants Svalbe . 136

Two Remarks on Reconstructing Binary Vectors from Their Absorbed
Projections

Attila Kuba, Gerhard J. Woeginger . 148

How to Obtain a Lattice Basis from a Discrete Projected Space
Nicolas Normand, Myriam Servières, JeanPierre Guédon 153

Discrete Topology

Local Characterization of a Maximum Set of Digital (26, 6)-Surfaces
Jose C. Ciria, Angel de Miguel, Eladio Domı́nguez,
Angel R. Francés, Antonio Quintero . 161

Algorithms for the Topological Watershed
Michel Couprie, Laurent Najman, Gilles Bertrand 172

The Class of Simple Cube-Curves Whose MLPs Cannot Have Vertices
at Grid Points

Fajie Li, Reinhard Klette . 183

Computation of Homology Groups and Generators
Samuel Peltier, Sylvie Alayrangues, Laurent Fuchs,
Jacques-Olivier Lachaud . 195

Inclusion Relationships and Homotopy Issues in Shape Interpolation
for Binary Images

Javier Vidal, Jose Crespo, Victor Maojo . 206

Object Properties

Discrete Bisector Function and Euclidean Skeleton
Michel Couprie, Rita Zrour . 216

Pixel Queue Algorithm for Geodesic Distance Transforms
Leena Ikonen . 228

Table of Contents IX

Analysis and Comparative Evaluation of Discrete Tangent Estimators
Jacques-Olivier Lachaud, Anne Vialard, François de Vieilleville 240

Surface Volume Estimation of Digitized Hyperplanes Using Weighted
Local Configurations

Joakim Lindblad . 252

Rectification of the Chordal Axis Transform and a New Criterion for
Shape Decomposition

Lakshman Prasad . 263

Reconstruction and Recognition

Generalized Functionality for Arithmetic Discrete Planes
Valerie Berthé, Christophe Fiorio, Damien Jamet 276

Complexity Analysis for Digital Hyperplane Recognition in Arbitrary
Fixed Dimension

Valentin E. Brimkov, Stefan S. Dantchev . 287

An Elementary Algorithm for Digital Line Recognition in the General
Case

Lilian Buzer . 299

Supercover Model and Digital Straight Line Recognition on Irregular
Isothetic Grids

David Coeurjolly . 311

Discrete Epipolar Geometry
Masatoshi Hamanaka, Yukiko Kenmochi, Akihiro Sugimoto 323

Local Point Configurations of Discrete Combinatorial Surfaces
Yukiko Kenmochi, Yusuke Nomura . 335

Reversible Polygonalization of a 3D Planar Discrete Curve: Application
on Discrete Surfaces

Isabelle Sivignon, Florent Dupont, Jean-Marc Chassery 347

Uncertain Geometry

Uncertain Geometry in Computer Vision
Peter Veelaert . 359

X Table of Contents

Optimal Blurred Segments Decomposition in Linear Time
Isabelle Debled-Rennesson, Fabien Feschet, Jocelyne Rouyer-Degli 371

Shape Preserving Digitization of Binary Images After Blurring
Peer Stelldinger, Ullrich Köthe . 383

Visualization

A Low Complexity Discrete Radiosity Method
Pierre Y. Chatelier, Rémy Malgouyres . 392

A Statistical Approach for Geometric Smoothing of Discrete Surfaces
Bertrand Kerautret, Achille Braquelaire . 404

Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces
Nilo Stolte . 414

Author Index . 427

Increasing Interconnection Network
Connectivity for Reducing Operator Complexity

in Asynchronous Vision Systems

Valentin Gies and Thierry M. Bernard

ENSTA, 32 Bd Victor 75015, Paris, France
contact@vgies.com,

http://www.ensta.fr/uer/uei/eng/index.html

Abstract. Due to the restriction of SIMD mode to local operations in
VLSI massively parallel vision chips, using programmable connections
and asynchronous communications are key ingredients to support re-
gional computations. Asynchronism implies using combinatorial multi-
input operators having an important hardware cost. To reduce it, we
propose to use a connection network having a connectivity level greater
than the mesh being mapped. This solution allows to use only 2-inputs
asynchronous operators having a reduced hardware cost in each pixel. Ex-
amples and results will be presented on the examples of the regional sum
algorithm computed over a 4-connectivity squared mesh connected with a
6-connectivity interconnection network, and the regional sum computed
over a 6-connectivity squared mesh connected with a 8-connectivity in-
terconnection network.

1 Introduction

An artificial retina is an image sensor with a processing element (PE) in each
pixel. Such VLSI circuits are also called ”vision chips” [1]. Motivated by the
low power implementation of vision applications, we focus our research [2] on
digital programmable artificial retinas (PAR), for which the PE is a tiny digital
processor called the pixellic processor. The latter allows the on-site processing
of data from the pixel or its neighbors, according to instructions provided by an
external program.

The basic operating mode of a PAR is the SIMD mode (Single Instruction
Multiple Data) : at a given time, the same instruction is simultaneously executed
by each pixellic processor. SIMD mesh arrays for image processing were popular
in the eighties as they allow the efficient implementation of local and shift-
invariant operators (linear filtering, mathematical morphology, ...). But they
were later abandoned due to several drawbacks. Nowadays, SIMD processing
has come back into favor within commercial microprocessors in order to cope
with frequency and power consumption limitations. While PARs fully benefit
from the SIMD low power advantages, they are much less subject to SIMD

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 V. Gies and T.M. Bernard

drawbacks than the mesh arrays of the eighties. Still, the SIMD mode is only
well adapted to low-level vision.

Rather than processed images produced by low-level vision operators, a PAR
should ideally output image descriptors, which can only result from higher levels
of vision. These descriptors are based on regions resulting from a segmentation
of the image. These regions need efficient regional operators for manipulating
it. In contrast with neighbor-to-neighbor communications used in PARs for low-
level vision, regional operators need to communicate between sparse and distant
pixels.

Programmable neighbor-to-neighbor connections [3] allow to implement data-
dependant communication networks within the SIMD framework, but with very
poor synchronous performances. In the synchronous case, communication speed
is limited to ”one pixel farther per clock cycle”.

Suppressing the above drawback leads to use asynchronous instead of syn-
chronous communication. Thus PARs have to feature programmable connections
and asynchronous communications and computations to efficiently handle regions.

This paper first presents some existing solutions for computing an exemplary
asynchronous regional task, the ”regional sum” in a 4-connectivity network using
a dedicated asynchronous adder in each pixel. Since this adder cost is prohibitive
for very large scale implementations, we propose a new communication network
based on 6-connectivity reducing the hardware cost of asynchronous operators
by reducing their necessary inputs to the minimum possible. Algorithm for in-
stalling the communication network is presented, a hardware cost comparison is
proposed.

2 Linear Bit-Serial Multi-input Adder

Computing a regional sum implies to collect data from all the pixels of the region.
Collecting and adding these data in one chosen place implies moving data on
long distances. In order to overcome this problem, data must be added locally.
To do this, a possibility is to chain pixels with an adder operator inside the
pixel. The operator will have to add the binary value provided by the preceding
pixel, and the local value. For digital sum computation, bits have to be processed
one after the other, from less significant bit to most significant bit. In this case,
one also has to sum the carry stored in each pixel during the computation of
the preceding bit sum. Finally, the local operator has to be an adder able to
compute the sum of 3 binary inputs. The operator used is a full adder.

The principle of the global addition is explained in fig.1.This solution has been
proposed and implemented by in [4] using dynamically reconfigurable chains of
pixels set by external programming.

2.1 Sum Algorithm

In each processor, the full adder inputs are connected to local binary data (in-
ternal bit and carry) and to the preceding full adder less significant output bit
(usually called the sum bit). The least significant output bit is connected to the

Increasing Interconnection Network Connectivity 3

Fig. 1. Linear bit-serial multi-input adder process

next full adder input in the chain. This bit can also be seen as the parity of the
number of 1’s input to the full adder in that pixel. By associativity of the parity
operator, the result at the end of the chain can be interpreted as the parity of
the number of 1’s among all local binary inputs in the chain (fig.1). This value is
also the least significant bit of the sum of local binary data of the whole region.
To start the regional sum algorithm, the least significant bit of the operand in
each pixel is placed in the internal bit while all carries are reset. The first step is
to run the global combinatorial sum computation and to get the least significant
bit of the sum in the adder at the end of the chain (displayed as a double circled
Sbit0 in fig.1). The second step is to move the most significant bit (called SBit1
in fig.1) of each full adder in the carry bit. Besides, local values corresponding
to the next bit of the operands are loaded in the internal bit of the pixel.
Then, the process is iterated to produce each bit of the sum, as the output of
the processor in the pixel at the end of the chain.

This algorithm computes the regional sum in N combinatorial operations
where N is the number of bits required to represent the sum. These combi-
natorial operations are executed in a synchronous sequence. Since the regional
sum operator is based on the ripple propagation, from pixel to pixel of parity
information from the beginning to the end of the chain, we consider it as an
asynchronous operator.

2.2 Limitations

Although this implementation allows to compute the regional sum quickly, the
main problem is that a chain is a linear structure (cf. fig.2), and it is impossible
to cover arbitrary connected sets of pixels with chains. Figure 3 shows a simple
example of this impossibility. In such a situation, a tree-based bit-serial multi-
input adder is needed instead of a linear one.

Fig. 2. Linear adder Fig. 3. Tree adder

4 V. Gies and T.M. Bernard

3 Tree Bit-Serial Multi-input Adder

The asynchronous algorithm used to compute a sum over an arbitrary shaped
region is an extension of the linear bit-serial multi-input one presented in previ-
ous section. The main difference is the tree structure of the global adder. Such
a structure has been implemented in the Associative Mesh of Orsay [5] [6].

What is a tree? It is a direct acyclic graph [7]. That means there is no loop
(it is impossible to find 2 points connected by more than one direct subgraph)
and there is only one root in it. The acyclic property is needed for using non
idempotent associative operators (such as sum) on a graph [8]. The root is be
used to collect the sum information computed on the graph.

Every pixel in the region is connected to this root through a spanning tree
(fig. 3). As a consequence, inputs of the adder are connected to local binary
data (internal bit and carry) and to all the directly preceding full adder least
significant output bits in the tree. Consecutively, in 4-connectivity, each pixel
different from the root can be connected to up to 3 neighbors as input of the
adder, the fourth one being necessarily connected to the output of the adder.
Taking into account 1 local binary data (both binary local data are added syn-
chronously before the asynchronous sum), a total of 4 binary inputs are needed
for the local adder. A Wallace tree analysis shows that 1 full adders and 2 half
adder are needed to perform this task in a combinatorial way.

The algorithm used to compute the sum is very similar to the one described
in section 2.1. The only difference lies in the number of inputs of the adders.

At this point, one main issue is still remaining : How to install a spanning
tree over a region using a fast enough procedure regardless of the region shape?

3.1 Asynchronous Spanning Tree Installation

A spanning tree cannot be settled efficiently in a synchronous way, because
the number of steps of the algorithm would grow linearly with the geodesic
diameter, and it would take a long time. So, we have to perform this task in an
asynchronous way.

The asynchronous algorithm used is the following one. At initialization, all
connections between pixels of a same region are established. All pixels are in-
active and a root is chosen, deterministically or at random. Then the root is
activated, and communicate its state to the neighbor pixels. Each activated pixel
keeps in memory the connection through which it was activated, and forward its
active state to its neighbors. This process propagates asynchronously through-
out the region until all pixels are active. The oriented spanning tree is obtained
looking at the unique connections used for the activation of each pixel.

As explained before, a spanning tree is a direct acyclic graph, that means each
pixel must have only one antecedent. During the algorithm, a pixel may have to
choose between 2 or more antecedents if they want to activate the considered
pixel at the same time. For this reason a 4 inputs arbiter is needed in each pixel.

Increasing Interconnection Network Connectivity 5

3.2 Tree Bit-Serial Adder Asynchronous Hardware Cost

The different asynchronous components needed to perform regional sum com-
putation and spanning tree installation have been defined before. According to
the specification above, the elementary processor asynchronous part is composed
of a 4-input arbiter (32 transistors), a 4-input adder(44 transistors), and 6 pro-
grammable connections (necessary for choosing 3 out of 4 inputs). The hardware
cost of the asynchronous part is finally 82 transistors. Such an important cost is
worth being reduced for a VLSI implementation.

4 Network Topology for Regional Sum Computation
over a 4-Connectivity Region

Asynchronous dedicated operators used for sum computation are expensive mostly
because they have 4 inputs. To cut this transistor expense, a lighter structure
is desirable. When looking at an example of computing network, we notice that
most of the cells exploits their 4-input convergent operators as simple 1-input
operators only. This is a waste of resources. Is there any way to better distribute
the network, that allows the use of k-input convergent operators with k smaller
than 4?

First, let’s recall that k = 1 corresponds to 1-input operators and is therefore
insufficient. What about using a 2-input asynchronous operator? Let’s call it a
2-input convergent operator. Let’s consider a computation network over a region
with m pixels. Connecting these m pixels together in a tree structure requires
exactly m−1 operators, convergent or not. How to settle them among m pixels?
Only one 2-input convergent operator in each pixel could be enough. There are 2
main issues for implementing such a structure. The first one is the network topol-
ogy needed to implement it, the second one is how to install the spanning tree.

4.1 Network Topology

We recall that a 4-connectivity network combined with the use of 2-input con-
vergent operators is insufficient to set-up a network over an arbitrary shaped
region. Let’s consider a cross-shaped region of 5 pixels, such a region is an ex-
ample of this impossibility (Fig. 5). A solution is to increase the connectivity
level used. An 8-connectivity interconnection network could be an obvious solu-
tion to the problem, allowing vertical, horizontal and both diagonal connections.
However, the hardware cost would be rather expensive. A better solution is to
use 6-connectivity and 2-input convergent operators. First, let’s show that this
solution fits our needs. For this, let’s consider the pixel matrix as a hexagonal
mesh (Fig. 4). Thanks to hexagonal mesh properties, an arbitrary pixel config-
uration can be connected with only 2-input convergent operators. For example,
installation of a spanning tree using only 2-input convergent operators over a
5 pixels cross-shaped region is proposed (Fig. 5),whereas it was impossible to
map in 4-connectivity. 6-connectivity is the lowest connectivity level allowing the
connection of an arbitrary shaped region into a tree structure with only binary

6 V. Gies and T.M. Bernard

Fig. 4. Transformation from square to hexagonal mesh

Fig. 5. Spanning tree over a cross-shaped region

operators, and it leads to the lowest possible hardware cost using asynchronous
computation operators.

4.2 Asynchronous Spanning Tree Installation

Using 4-inputs convergent operators, installation of a spanning tree is a rather
simple task. Starting from a fully connected network, a signal propagates from
the tree root through the network until all pixels have been reached (cf. 3.1).
Using 2-inputs convergent operators, this task is much more difficult because
at the initialization of the algorithm, each pixel can be connected to 2 pixels
only, and not to all its neighbors. Connecting all the neighbors is something
simplifying the construction of the spanning tree but fortunately it is not really
necessary. One as only to ensure that propagation starting from one pixel will
reach all the other pixels of the region. That means every pixel of the region has
to be connected to all other pixels. Such a region is called a strongly connected
component (SCC). The issue is how to build a SCC in 6-connectivity using only
2-inputs convergent operators.

Algorithm Principles. A way to solve this problem is to connect all the
boundary pixels of the region into a clockwise oriented chain and then to connect
all the pixels not connected yet and the boundary rings together. Fig.6 shows the
original region on the top, and its corresponding hexagonal representation after
the initialization of the connections on the bottom. As explained before, pixel
inputs are connected to a maximum of 2 other pixels. According to this connec-
tion method, boundary pixels are connected in a SCC (a ring is a simple SCC),
and other pixels are added to the SCC thanks to bi-directional connections, this
ensuring them to be part of the SCC.

The final step of the proposed method is to extract a spanning tree from the
SCC by propagating a token from the root as explained before in section 3.1.

Algorithm for Connecting a SCC. The algorithm used is very simple, and
can performed in a very cheap and fast synchronous way. Initialization of the con-
nections can be done by only considering 6 local pixel configurations as described

Increasing Interconnection Network Connectivity 7

Region being connected Corresponding hexagonal region
with connections initialized

Spanning tree
obtained

Fig. 6. Example of spanning tree installation using a 6-connectivity interconnection
network and 2-inputs convergent operators over a 4-connectivity region

in Fig. 7. Configurations 1 to 6 are used for connecting boundary pixels. Config-
urations 5 and 6 also allow to connect all other pixels diagonally. In the different
configurations of , the pixel to connect is double-circled. Black pixels are
pixels belonging to the region while white ones are pixels outside the region.

An important fact is the non-isotropy of the local transformation. Configura-
tion 5 and 6 are not rotated versions of configurations 1 and 2 or 3 and 4. This
is a consequence of mapping a 4-connectivity square mesh onto an hexagonal
network. Instead of configurations 5 and 6, using a 2π/3 rotated versions of con-
figurations 1 and 2 would lead to connect diagonal configurations of pixels not
connected in a 4-connectivity squared mesh. Actually, the diagonal connection,
not present in 4-connectivity, is used here for establishing all the non-boundary
connections.

(a) Config. 1 (b) Config. 3 (c) Config. 5

(d) Config. 2 (e) Config. 4 (f) Config. 6

Fig. 7. Local configurations for SCC initialization in 4-connectivity using a 6-
connectivity interconnection network

Fig. 7.

8 V. Gies and T.M. Bernard

Validity of the Algorithm. Having presented the principles and operation of
the algorithm, let’s demonstrate its validity. By construction, all pixels are con-
nected in a same SCC. By construction, all pixels of a same region are connected
into one SCC. The only point to check is that pixel inputs do not have to be
connected to more than 2 neighbor pixels, to allow the use of 2-inputs operators.

As shown in Fig.7, each configuration sets-up one input connection. We have
to verify that if a pixel neighborhood corresponds to 2 configurations, all the
other configurations are false. For this let’s consider the mutual exclusions of the
configurations. Configuration 1 excludes configuration 3 and 5. Configuration
3 excludes 1 and 5, and configuration 5 excludes 1 and 3. Finally only one
odd-numbered configuration can be true at one time. It is the same for even
configuration. Only one even configuration can be true for a given neighborhood.
There are no exclusions between odd and even configurations. Finally, a pixel
neighborhood can only match one even and one odd configuration. That means
a maximum of 2 configurations can be valid at one time, and maximum 2 input
connections will be set-up in the pixel.

Performance of the Algorithm. The proposed algorithm for initializing the
SCC can be performed very efficiently in a synchronous non-iterative way. This
allows using this algorithm on a massively parallel synchronous machine having
only limited resources for synchronous computation. There is no hardware ded-
icated to the spanning tree initialization task, which means that the reduction
of hardware cost due to the use of 2-input convergent operators does not imply
additional costs for installing the spanning tree.

4.3 Hardware Reduction

Using 6-connectivity connections over a squared mesh allows to reduce the hard-
ware cost dedicated to asynchronous regional sum to one 2-input arbiter (8
transistors) and one 3-inputs adder (20 transistors) in each pixel. 3 inputs are
necessary for the adder : one for the local bit, and two for the neighbor connec-
tions. However, the necessary number of programmable connections increases. 2
out of 6 neighbors have to be connected at one time. Consequently, the minimal
number of programmable connections necessary is 5 connections for each input.
Finally, the number of transistors needed is 8 + 20 + 10 = 38 transistors.

44 transistors are saved in each pixel by using a 6-connectivity topology. This
leads to a reduction of 54% of the asynchronous hardware expense. However, the
algorithmic capabilities are remaining the same.

5 Network Topology for Regional Sum Computation
over a 6-Connectivity Region

5.1 Network Topology

Increasing the connectivity level of the interconnection network for reducing
hardware cost of regional computation using only 2-input convergent operators

Increasing Interconnection Network Connectivity 9

Fig. 8. Transformation from squared to hexagonal 8-connectivity mesh

(a) Config. 1 (b) Config. 3 (c) Config. 5 (d) Config. 7

(e) Config. 2 (f) Config. 4 (g) Config. 6 (h) Config. 8

Fig. 9. Local configurations for SCC initialization in 6-connectivity using a 8-
connectivity interconnection network

can be extended to 6-connectivity meshes. A 8-connectivity interconnection net-
work is used. The interconnection network will be represented in a squared mesh
because as shown in Fig. 8, in a squared mesh, a 8-connectivity neighborhood
is more regular (central symmetry) than in a hexagonal mesh (only 2 axial
symmetries).

The principles of the algorithm remain the same as in 4-connectivity. Bound-
ary pixels are connected into a clockwise oriented chain and non-boundary pix-
els are connected to the SCC formed by the boundary ring using a synchronous
algorithm (cf. Fig. 9).There are 8 configurations to consider for setting the inter-
connection network. All theses configurations are used for connecting boundary
pixels. Configurations 1 and 2 are also used for connecting non-boundary pixels
to the boundary ring. With the proposed algorithm, an 6-connectivity network
can be connected using 2-input convergent operators.

5.2 Hardware Reduction

Using an 8-connectivity interconnection network over a 6-connectivity hexagonal
mesh allows to reduce the hardware cost dedicated to asynchronous regional sum
to one 2-input arbiter (8 transistors) and one 3-inputs adder (20 transistors) in

10 V. Gies and T.M. Bernard

each pixel. 3 inputs are necessary for the adder : one for the local bit, and two for
the neighbor connections. Considering interconnections, 2 out of 8 neighbors have
to be connected at one time. Consequently, the minimal number of programmable
connections necessary is 7 connections for each input. Finally, the number of
transistors needed is 8 + 20 + 14 = 42 transistors.

Using 7-input asynchronous adders and 6-input arbiters leads to an hardware
cost of 156 transistors (72 for the adder and 84 for the arbiter). Finally, 114 are
saved in each pixel by using a 8-connectivity interconnection network. This leads
to a dramatic reduction of 73% of the asynchronous hardware expense, without
lowering algorithmic capabilities.

6 Conclusion

We first presented implementations for regional sum computation through sub-
sets of pixels in the image. After evaluating the hardware cost of dedicated
operators needed for computing the sum asynchronously, we proposed using a
6-connectivity interconnection network and 2-input operators for reducing the
hardware cost of asynchronism in 4-connectivity squared meshes. This leads to a
important reduction of more than half the original transistor cost. The reduction
is even more important (73%) when using an 8-connectivity interconnection net-
work and 2-input convergent operators for mapping 6-connectivity region. Such
a reduction offers an opportunity for achieving a dense large scale implementa-
tion of this circuit. Such an implementation is now on its way, and will lead to
a vision chip allowing to perform medium level image processing.

References

1. Moini, A.: Vision Chips. Kluwer Academic Publishers, ISBN: 0-7923-8664-7 (2000)
2. Paillet, F., Mercier, D., Bernard, T.: Second generation programmable artificial

retina. In: IEEE ASIC/SOC Conf. (1999) 304–309
3. Li, H., Stout, Q.: Reconfigurable Massively Parallel Computers. Prentice-Hall,

Englewood Cliffs, NJ (1991)
4. Komuro, T., Kagami, S., Ishikawa, M.: A dynamically reconfigurable simd processor

for a vision chip. IEEE Journal of Solid-State Circuits 39 (2004) 265–268
5. Merigot, A.: Associative nets: A graph-based parallel computing net. IEEE Trans-

actions on Computers 46 (1997) 558–571
6. Dulac, D., Mohammadi, S., Merigot, A.: Implementation and evaluation of a parallel

architecture using asynchronous communications. In: CAMP. (1995) 106–111
7. Ducourthial, B., Merigot, A.: Graph embedding in the associative mesh model.

Technical Report TR-96-02 (1996)
8. Ducourthial, B., Mérigot, A.: Parallel asynchronous computations for image analy-

sis. Proceedings of the IEEE 90 (2002) 1218–1228

Geometric Robot Mapping

Rolf Lakaemper1, Longin Jan Latecki1, Xinyu Sun2,
and Diedrich Wolter3

1 Temple University, Philadelphia, PA 19122, USA
{latecki, lakamper}@temple.edu

2 Texas A&M University, College Station, TX 77840, USA
xsun@math.tamu.edu

3 Universität Bremen, Bremen, Germany
dwolter@informatik.uni-bremen.de

Abstract. The purpose of this paper is to present a technique to cre-
ate a global map of a robot’s surrounding by converting the raw data
acquired from a scanning sensor to a compact map composed of just a
few generalized polylines (polygonal curves). To merge a new scan with a
previously computed map of the surrounding we use an approach that is
composed of a local geometric process of merging similar line segments
(termed Discrete Segment Evolution) of map and scan with a global
statistical control process. The merging process is applied to a dataset
gained from a real robot to show its ability to incrementally build a map
showing the environment the robot has traveled through.

Keywords: Robot Mapping, Polygon Merging, Polygon Simplification,
Perceptual Grouping.

1 Introduction

Imagine a scenario where a robot explores an unknown terrain. The goal is to
acquire in real time a global overview map integrating all measurements collected
by the robot. Here we deal with measurements obtained by 2D range sensors,
called scans, that represent partial top views of the robots environment. Building
a global overview map from scans is a typical scenario for rescue robots, where
the overview knowledge, in the form of a global map, is particularly important
to localize victims in catastrophe scenarios (e.g., in collapsed buildings) and
to ensure that the whole target region has been searched [4]. Since odometry
information under such conditions is very unreliable, we assume that it is not
available. Also landmarks are ambiguous.

The whole process from reception of raw scanning data to the final map
refers to the problem of simultaneous localization and mapping (SLAM) in
robotics. The proposed approach addresses two main problems in SLAM
stated in [10].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 11–22, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

12 R. Lakaemper et al.

1. The measurement errors are statistically dependent, since errors in control
accumulate over time, and they affect the way future sensor measurements
are interpreted.

2. The second complicating aspect of the robot mapping problem arises from
the high dimensionality of the entities that are being mapped, which leads
to serious runtime and storage problems.

We address the problem of measurement errors being statistically dependent
with a new process of map merging that is based on geometric local process of
line segment merging with a global statistical control.

The second problem arises from the fact that in most mapping approaches
the objects of which maps are built are simply points. These are either directly
scan reflection points or point landmarks, e.g., [2] and [10]. In some approaches
simple geometric features, especially line segments [7, 9, 1] are used. However,
the maps are still composed of a huge numbers of them, since these approaches
do not provide any mechanisms to incrementally reduce the number of building
blocks, which can be line segments of simply points. Consequently, the obtained
maps are composed of thousands or even millions of points or line segments. An
example of such a map is shown in Fig. 1(a). It is composed of 144400 points
and obtained by alignment of 400 scans. It is then clear that such maps lead to
serious runtime and storage problems, e.g., it is impossible to map larger envi-
ronments and to perform loop closing in real time. In our map representation,
we simply do not run into the second problem. Our representation is built of
higher level objects, which are line segments and generalized polylines, and we
have an explicit process, called Discrete Segment Evolution, that reduces the
number of line segments to a minimal number required to represent the mapped
environment. An example map obtained by our approach is shown in Fig. 1(b).
This map was obtained from the same scan data as the map in (a), and it is
composed of only about 50 line segments (which amounts to about 100 end-
points). Videos illustrating our incremental mapping results can be viewed on
http://knight.cis.temple.edu/∼shape/robot/.

A nice probabilistic framework to construct a global map from scan data is
presented in [8]. However, this framework is based on the assumption that the
uncertainty of scan points’ positions is known. Due to the dependence of laser
scan measurements on surface characteristics of scanned objects, e.g., glass-like
surface, brick wall, and metal surface, this assumption is not satisfied in our
example of rescue robots. We approach the problem of constructing a global map
using the principles of perceptual grouping, which look for geometric structures
in the data without any assumptions about the error characteristics [6].

2 Robot Mapping

In this section we introduce some notation regarding the system used by a robot
to create its global map of its surroundings, and we summarize the main steps
performed at each iteration of the algorithm, i.e., on the arrival of a new scan.

Geometric Robot Mapping 13

−500 0 500 1000 1500
−1000

−800

−600

−400

−200

0

200

400

600

800

(a) (b)

Fig. 1. (a) A global map obtained by alignment of 400 scans is composed of 144400
points. (b) A global map obtained by the proposed map merging algorithm is composed
of about 50 line segments (100 endpoints). Both maps are obtained from the same laser
range data set showing a hallway at the Univ. of Bremen

The output is a global map that represents a top view of the environment using
a small number of polylines. Fig. 1(b) illustrates such a map. For comparison, a
global map obtained by alignment only is shown in Fig. 1(a).

The proposed algorithm merges the newest laser range scan St at time t
with a global map Gt−1 built from previous scans 0 to t − 1. The global map is
produced incrementally, which means that at every time t we have a ready to use
and a very simple global map of the environment. This is very important for all
navigation and mapping tasks. Both global map Gt and scan St are composed
of generalized polylines.

A generalized polyline is a set of line segments, having a specific ordering,
whose vertices may or may not be connected. Observe that a classical defini-
tion of a polyline (polygonal curve) requires that the endpoints of consecutive
segments coincide. Generalized polylines result naturally when scan points are
approximated with line segments, which is our first processing step of the input
range data. By dropping the constraint that a polyline be composed of line seg-
ments whose vertices are connected, we do not introduce additional noise that
would result from connecting these vertices. The usage of generalized polylines is
particularly important in the polyline merging and shape similarity algorithms
described below.

Our first processing step (approximation of scan points with line segments) is
followed by the segment grouping step. We form an ordered list of segments by
minimizing the sum of the distances of their endpoints. Finally, if the endpoints

14 R. Lakaemper et al.

of consecutive segments are too far apart, we split the list into sublists. Thus,
generalized polylines are sublists of this list.

To create a global map G, we start with the first global map G1 being equal
to the first scan S1. Henceforth, assuming we have created the global map Gt−1
at time t− 1 and a new scan St has arrived, Gt is created in the following three
steps:

Correspondence: We use a very simple and common approach to establish
correspondence between global map Gt−1 and a new scan St. We position the
new scan St at the pose of the previous scan St−1 that has been aligned to the
previous global map Gt−2 (in the process of construction of the actual global
map Gt−1). The pose is the position and rotation angle in the coordinates of
the global map. Then the correspondence is establish by mapping each segment
endpoint of St to a closest point in Gt−1 and the same with roles of St and Gt−1
interchanged.

This process of correspondence computation works fine if there is continuity in
the robot pose, i.e., robot pose changes only slightly from scan to scan. If the con-
tinuity assumption is not satisfied, we use shape similarity to establish the corre-
spondence [5] and [11]. However, this approach is outside the scope of this paper.

Alignment: The current scan St is rotated and translated until a minimum
distance is found between the corresponding points. Then the closest points are
found again, and the whole process is repeated until it stabilized. This algorithm
to align scan St and map Gt−1 is called Iterative Closest Point (ICP), and is
described in [3].

Merging: This is the main contribution of this paper and its detailed discussion
follows in Section 2.1. The output of alignment overlays the actual scan on the
global map, but the surfaces of the same objects are still represented by separate
polylines. The goal of merging is to represent surfaces of the same objects by
single polylines.

2.1 Merging

Merging is the task of combining similar segments taken from two aligned maps
to form new segments in a joint map. The similarity between pairs of segments is
modeled following principles of perceptual grouping. In the case of incremental
building of a global map, the task of merging is to combine similar line segments
of the new scan, St, and the previous global map, Gt−1, to form new segments
that define a new and current global map Gt. We assume that St has been aligned
to Gt−1. Merging consists of two steps, which integrate the new information
contained in St with the previous global map to produce Gt. The two steps are
restrictive pairing and simplification.

Restrictive Pairing: The result of pairing can intuitively be understood as
visual average of St and Gt−1. Since our goal is to combine the information from

Geometric Robot Mapping 15

both maps, we allow only pairing of segments from different maps. Therefore,
we define two classes of line segments, class C1 is a list consisting of segments
from Gt−1 and class C2 is a list consisting of segments of St.

Although the final task of merging is to decrease the number of line segments
by combination, the pairing step goes into the opposite direction: it might create
many new segments, which will be simplified in the second step called simplifica-
tion. Pairing can be compared to a pencil drawing technique known as sketching,
e.g., used for cartoon drawings: to find the final outline of an object, it is first
approximated by a larger number of light strokes, giving the eye the opportunity
to imagine and select the correct position.

The process creates all possible pairs of line segments that are sufficiently
similar, taking one segment from C1 and one from C2. Pairing of two segments
from the same class is not allowed.

The similarity of line segments L1 and L2 is measured with the cost function
C(L1, L2, ad) (defined below), where ad is an angular direction given by global
statistics (defined below). If C(L1, L2, ad) is below a given threshold, we create
a new line segment ms(L1, L2, ad) (defined below) that is visually close to L1
and L2. Figure 2 shows an example of restricted pairing. The newly created
segments must follow the main directions, i.e., they are only allowed to have
angles of 0o,+60o,−60o with the x axis.

A single line segment L1 can create many children line segments ms(L1, L
i
2, ad)

by pairing with segments Li
2 for i = 1, ..., n. We need to allow a single segment

to pair with more than one segment from the other class, since we do not know
the exact segment correspondence. It might be that the correct shape feature is
created by the pairing with a second partner. However, to limit the computa-
tional complexity, each line segment is allowed to create only a small number of
segments (at most 3 children segments are allowed in our implementation).

We remove all line segments from C1 and C2 that were parents of at least
one new segment. We denote the resulting lists by C ′

1 and C ′
2. We denote with

At a list of all resulting children together with C ′
1 and C ′

2. Formally, the output
of restricted pairing is defined as (Tp is a pairing cost threshold):

At = C ′
1 ∪ C ′

2 ∪ {ms(L1, L2, ad) : C(L1, L2, ad) < Tp, L1 ∈ C1, L2 ∈ C2}.
Restrictive pairing may create some small artifacts in addition to features

present in the reality, such as parallel segments in Fig. 2(b). The artifacts may
be introduced, since we do not know the exact correspondence of line segments,
and therefore, must allow a single line segment to pair with many line segments
in the other class. We therefore need a cleaning process to remove these artifacts,
or, in analogy to the sketching example mentioned above, a process that selects
or creates an appropriate precise set of strokes based on the approximation. This
process is called simplification and it is the second step in the merging process.
Its result is illustrated in Fig. 2(c).

Simplification: The input is the joint map At created by restrictive pairing.
Simplification can be viewed as cleaning process after pair creation to create a
smaller set of possibly new segments, being the final merging result. To use the

16 R. Lakaemper et al.

Fig. 2. The figure (b) is obtained from (a) by the proposed pair creation process. The
index pairs in (b) refer to parent segments in (a). (c) shows the final result obtained by
simplification of (b). The newly created segments in (b) and (c) must follow the main
directions of 0o, +60o, −60o with the x axis

sketch analogy again, the simplification process creates a single line by visually
averaging the approximating bundle of strokes. Pairs of line segments are merged
together to form new segments using the same merging process ms and cost
function C but with different constraints. Simplification is done without any
class restriction, i.e., a line segment in At can pair with any other segment in At.

The main difference is that the simplification process has a global control
mechanism: We iteratively merge a pair whose merging cost C is the lowest at
each pass. More precisely, the segment pair L1, L2 with lowest cost C(L1, L2, ad),
for one of the main angular directions ad, is merged in each pass. This means
that ms(L1, L2, ad) is inserted to list At, and L1, L2 are removed from At. Thus,
each line segment can have at most one child. The process stops when the lowest
cost is above a threshold Ts. The resulting simplified version of At is the new
global map Gt. Fig. 3(c) shows the simplified version of line segments in (b).
Observe that both merged shape features from (a) are preserved (the straight
line and the tent). This is acceptable, since given the input as in Fig. 3(a), we

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

3

4

Global Map

Scan

1

2 3

4

1 2 3 4

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

3

4

(a) (b) (c)

Fig. 3. The figure (b) is obtained from (a) by the proposed pair creation process. The
index pairs in (b) refer to parent segments in (a). (c) shows the result simplification of
(b). The newly created segments in (b) and (c) have to follow the main directions of
0o, +60o, −60o with the x axis

0 100 200 300 400 500 600 700 800 900

−200

−100

0

100

200

300

400

Global Map

Scan

1
2

3 4

5

1

2

3

4

5

 6

0 100 200 300 400 500 600 700 800 900

−200

−100

0

100

200

300

400 index scheme: (scan, global map)

(1,1) (5,6)

(4,5)

multiple combinations of
scan 2,3,4 and map 2,3

0 100 200 300 400 500 600 700 800 900

−200

−100

0

100

200

300

400

simplification of multiple segments

(a) (b) (c)

Geometric Robot Mapping 17

cannot decide which feature is the right one. This decision can be, however, made
after merging several consecutive scans.

The main angular directions for simplification are computed with the same
global statistics as in pairing process. This allows us to cope with accumulative
errors. Section 2.2 gives more details on global statistics.

2.2 Main Directions

The main directions ad are obtained as significant peaks in the direction his-
togram of line segments (angles with the x axis) in Gt−1(tm), where Gt−1(tm)
is a global map Gt−1 restricted to line segments created in at most tm time
steps ago. tm is a time memory factor. This restriction implies that only part
of global map recently created determines the main directions. Therefore, the
choice of directions is dynamic: the set of main directions ad is created with
respect to the most recent part of the global map. This dynamic process as-
sures the robustness of the algorithm with respect to main directions, e.g.,
for indoor environments, while simultaneously being flexible enough to react
to changing or even non present main directions, e.g., outdoor or natural envi-
ronments.

Each line segment in the restricted global map Gt−1(tm) contributes to the
bin representing its direction with the weight given by its length. This histogram
is cyclic, e.g., a window of size 5 around bin 1 contains bins 179, 180, 1, 2, 3.

An important feature of our approach is the interaction between main direc-
tions and merging: Let us assume we have a significant number of segments in St,
all having a similar direction that is significantly different from main directions
present in Gt−1(tm), i.e., these segments do not define a main direction yet. For
example, this is the case if the robot starts to perceive a new surface.

Since the new segments follow a significantly different direction, the cost
function C assures that they create no children, because the pairing cost is
above the threshold Tp, i.e., the transformation of the parent segments to child
segments is too expensive. Thus, the original segments will remain in At. Since
At, after simplification, becomes the new global map Gt, the new segments will
lead to a peak, and will open a new main direction in the direction histogram.
Consequently, pairing and simplification in the new direction will be allowed. A
real example will be given in Section 3.

The direction histogram represents the statistical distribution of line seg-
ment directions. This statistical control provides a solution to the problem of
cumulative errors (Problem 1 in the introduction). Cumulative errors introduce
systematic distortions in the directions of line segments that accumulate slowly.
The main issue is that accumulative errors do not lead to peaks in the direction
histogram, and consequently, appearing line segments are correctly mapped to
the existing main directions. On the other hand, as we have just described, if a
surface of a new object is oriented into a new direction, it will lead to a peak
in the direction histogram after a few scans of the surface have been acquired.
This solution is based on quantization of the angular directions. Thus, a new
main direction is created in the direction of the new surface if the difference

18 R. Lakaemper et al.

between the new direction and the existing main directions is larger then the
quantization factor, which is determined by the thresholds Tp and Ts. The fact
that the direction histogram provides a solution to the problem of cumulative
errors is also true for other histogram-based approaches, e.g., [9].

2.3 New Line Segment Creation and Cost Function

This section will describe the merging function ms and the associated cost func-
tion C used for the pairing and simplification process. The merging function is
the most important module in the merging system, since it is responsible for the
creation of the segments finally seen in the new map. Given a pair of line seg-
ments, L1 and L2, and the angular direction ad, it computes a merged segment
ms(L1, L2, ad) with the angular direction ad. The cost function C(L1, L2, ad) is
responsible for the filtering step: it produces the basic values for the decision if
a created segment will be accepted or rejected as a member of the approximated
map At or the new global map Gt. It measures the similarity of L1 and L2 in
the context of the main direction ad.

The geometric intuition of the presented merging process and, in particular,
the definition of merging cost C(L1, L2, ad) is based on cognitively motivated
principles of perceptual grouping. We followed the approach presented in [6] on
grouping line segments to form longer line segments. It states that proximity of
endpoints, parallelism, and collinearity are the main geometric relations that in-
fluence the perceptual grouping of line segments. Our setting is slightly different,
since we merge two line segments only with respect to a given main direction ad.
Therefore, we developed a new cost function. As mentioned above, the usage of
main directions is necessary to cope with cumulative errors.

Before we explain the meaning of the perceptual grouping principles in our
setting, we need to introduce one more concept of a straight line ld that follows
one of the main directions ad. Let two line segments L1 and L2 and a main
angular direction ad be given. A first step in our cost computation is to position
a line following direction ad between two line segments L1 and L2. The straight
line ld with direction ad is positioned between L1 and L2 so that the equation

d1 · l1 = d2 · l2

is satisfied (see Figure 4), where li is the length of segment Li and di is the
distance of the midpoint of Li to line ld for i = 1, 2. The merged segment
ms(L1, L2, ad) is defined by the convex hull of the projections of L1 and L2 on
line ld. It is the segment from P ′

1 to P ′
4 in Figure 4.

Now we can explain the meaning of the perceptual grouping principles in our
setting.

– Parallelism: The greater the angles between L1 and L2, and between L1
and L2 and ms(L1, L2, ad), the greater the cost of merging them together.
Likewise, the angle difference of longer segments have more weight than
shorter ones.

Geometric Robot Mapping 19

ld

P1

P2

dp

l1

P3
P4

P’1 P’2 P’3 P’4

l2

d1

d2

Fig. 4. Geometric illustration of the cost function C(L1, L2, ad)

– Collinearity: The greater the distance of the endpoints of L1 and L2 from
the target line ld, the higher the value of the cost function.

– Proximity: The greater the distance between the projections of L1 and L2
on line ld, the higher the value of the cost function.

Finally we can define the new cost function that integrates the three percep-
tual grouping principles. Given the line ld, the cost of merging L1 and L2 to
ms(L1, L2, ad) is defined by the following measure that incorporates our realiza-
tion of the perceptual grouping principles (see Figure 4):

C(L1, L2, ad) =

lr
(
(l1 + 1)d(P1,ld)+d(P2,ld)

1+K cos(a1)
− l1

d(P1,ld)+d(P2,ld)
1+K

)

1 + K cos(a12)
+

lr
(
(l2 + 1)d(P3,ld)+d(P4,ld)

1+K cos(a2)
− l2

d(P3,ld)+d(P4,ld)
1+K

)

1 + K cos(a12)

where a1 is the angle between L1 and ld, a2 is the angle between L2 and ld, a12
is the angle between L1 and L2, P1, P2 are endpoints of L1, P3, P4 are endpoints
of L2, d(Pi, ld) is the distance between point Pi and line ld. The constant K
depends on the metric units used, and need s to be adjusted to obtain a balance
between angular and metric units. The length ratio

lr =
l(ms(L1, L2, ad))
l(p(L1)) + l(p(L2))

is the quotient of the length of the merged line segment ms(L1, L2, ad) to the
sum of the length of the projections p(L1) and p(L2) of line segments of L1 and
L2 on line ld.

3 Implementation Details

3.1 Merging

Pairing: As described in Section 2.1, the merging consists of pairing followed by
simplification. The pairing step creates a rough approximation of the new map,

20 R. Lakaemper et al.

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

3

4

G

S

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

3

4

Global Map

Scan

1

2 3

4

1 2 3 4

(a) (b)

Fig. 5. New vertices are inserted in S in (a) as projections of vertices in G. The vertex
insertion is necessary to make the correspondence of line segments possible

0 5 10

0

2

4

0 5 10

0

2

4

0 5 10

0

2

4

0 5 10

0

2

4

Fig. 6. Input map is from Figure 5(b). Pairing with different threshold Tp and global
direction control with main directions of 0, +62o, −62o. From left to right we have Tp

= 0.05, 0.04, 0.03, 0.01

and it must take into account features in both the scan and the global map,
even if a certain feature is only present in one of them. An example is given in
Fig. 5, where the triangle feature is only present in the global map G. To permit
appropriate combinations with segments of this feature, the straight segment of
the scan S is split up to create segments corresponding to the feature segments
of the global map. In order to do so a correspondence between endpoints of line
segments is established. For every endpoint E in G, we find a closest point p(E)
in S. If distance from E to p(E) is below a predefined threshold and p(E) is not
an existing end point in S, then p(E) is inserted to S, splitting an existing line
segment in S into two collinear line segments (that meet at p(E)). We perform
the same for every endpoint E in S. The maps modified this way are the input
to pair building.

The creation of descendants in the pairing process is dependent on the pairing
threshold Tp. Fig. 6 shows the output of the pairing with global direction control
of the input shown in Fig. 5 with different thresholds Tp, leading to different
constellations: The leftmost map consists of newly created segments only. In the
second figure the triangle segments could only pair once. The rightmost figure
finally did not change the input; the threshold was too low to create any new
segments.

Geometric Robot Mapping 21

−1600 −1400 −1200 −1000

−1000

−800

−600

−400

−200

0

200

400

600

800

−1600 −1400 −1200 −1000

−1000

−800

−600

−400

−200

0

200

400

600

800

−1600 −1400 −1200 −1000

−1000

−800

−600

−400

−200

0

200

400

600

800

Fig. 7. Bremen hallway experiment: a new main direction is detected in the right
figure and used for merging

3.2 Main Directions

The following section shows an example for the interaction between the merging
process and the dynamic detection of main directions. The basic idea is not to
merge segments with a cost above Tp or Ts respectively, but to keep them in
their original position/direction Such segments can be described as outliers with
respect to the current main directions ad. If these outliers become dominant,
they will open a new main direction and will be merged. This process can be
observed in Fig. 7 showing a section of an experiment with real laser finder data
collected in a hallway at the University of Bremen. The robots’ position is in the
upper left corner, the robot moves up right and scans backward, i.e., down left.

In the left figure the robot approaches a 45o corner, the current main di-
rections consist of 0o and 90o angles with the x-axis. New 45o segments are not
simplified but transferred unchanged into the new global map. New 45o segments
still do not have enough weight to create a new direction in the center figure.
Additionally the 0o walls are out of sight, and therefore, the histogram loses
this entry (which does not effect any segments in this situation). The only main
direction remaining is 90o. In the right figure, new 45o segments finally create
a peak in the direction histogram. Hence the new main directions are now 90o

and 45o. Consequently, the new segments are merged together and simplified
following the new 45o direction.

4 Conclusions and Future Work

We presented a novel approach to robot mapping, based on an iterative process
that merges similar line segments of subsequent scans. The process is locally
controlled by a similarity of line segments, which is motivated by principles of

22 R. Lakaemper et al.

perceptual grouping. Additionally the process is controlled by global statistics,
giving emphasis to the main directions present in the map to eliminate effects of
accumulated errors of local scans. The experiments performed on real robot data
show that the interaction between local and global control is able to successfully
adapt to changes in directions without any pre-knowledge of the environment to
build the environmental map given by subsequent scans. The merging process
can be useful for any application where (visual) simplification of sets of line
segments is needed; further experiments will include simplification of images
gained by edge detection and hand drawn sketches for stroke recognition.

Acknowledgment

This work was supported in part by the National Science Foundation under
grant INT-0331786 and grant R3 [Q-Shape] in the framework of the SFB/TR 8
Spatial Cognition from German Research Foundation (DFG). We would like to
thank Sebastian Thrun for a helpful discussion regarding the topic of this paper.
Thomas Röfer is acknowledged for providing scan data.

References

1. Ingemar J. Cox. Blanche: Position estimation for an autonomous robot vehicle.
In Ingemar J. Cox and G.T. Wilfong, editors, Autonomous Robot Vehicles, pages
221–228. Springer-Verlag, 1990.

2. G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A
solution to the simultaneous localization and map building (SLAM) problem. IEEE
Transactions of Robotics and Automation, 2001.

3. A. Fitzgibbon. Robust registration of 2d and 3d point sets. In Proc. British
Machine Vision Conference, volume II, Manchester, UK, pages 411–420, 2001.

4. A. Jacoff, E. Messina, and J. Evans. Performance evaluation of autonomous mobile
robots. Industrial Robot: An Int. Journal, 29(3), 2002.

5. Longin Jan Latecki, Rolf Lakämper, and Diedrich Wolter. Shape similarity and
visual parts. In Proceedings of the 11th International Conference on Disrecte Ge-
ometry for Computer Imagery (DGCI), Naples, Italy, November 2003.

6. D. G. Lowe. Three-dimensional object recognition from single two-dimensional
images. Artificial Intelligence, 31:355–395, 1987.

7. F. Lu and E. Milios. Robot pose estimation in unknown environments by matching
2D range scans. Journal of Intelligent and Robotic Systems, 1997.

8. S. T. Pfister, S. I. Roumeliotis, and J. W. Burdick. Weighted line fitting algorithms
for mobile robot map building and efficient data representation. In ICRA, 2003.

9. T. Röfer. Using histogram correlation to create consistent laser scan maps. In
Proceedings of the IEEE International Conference on Robotics Systems (IROS-
2002), 2002.

10. S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors,
Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.

11. D. Wolter and L. J. Latecki. Shape matching for robot mapping. In Chengqi
Zhang, Hans W. Guesgen, and Wai K. Yeap, editors, Proc. of 8th Pacific Rim Int.
Conf. on Artificial Intelligence, Auckland, New Zealand, August 2004.

Discrete Geometry Applied in Hard Real-Time
Systems Validation

Gaëlle Largeteau1, Dominique Geniet1, and Éric Andrès2

1 LISI, Université de Poitiers & ENSMA, Téléport 2 - 1 avenue Clément Ader BP
40109 86961 Futuroscope Chasseneuil cédex, France.

2 IRCOM-SIC, SP2MI, BP 30179, 86962 Futuroscope Cedex, France

Abstract. Off-line validation of hard real-time systems usually stands
on state based models. Such approaches always deal with both space and
time combinatorial explosions. This paper proposes a discrete geometri-
cal approach to model applications and to compute operational feasabil-
ity from topological properties. Thanks to this model, we can decide
the feasability of real-time synchronous systems composed of periodic
tasks, sharing resources, running on multiprocessor architectures. This
method avoids state enumeration and therefore limits both space and
time explosion: computing an automaton model takes at least 2 hours
for a real application instead of at most 1 second using discrete geometry.

Keywords: Real-time, operational validation, multiprocessors, resource
sharing, geometrical modeling.

1 Introduction

In a real-time system, the correctness of a computation depends on both the
logical results of the computation and the time when results are produced. Time
constraints are called strict if not respecting them involves irreparable conse-
quences on the system safety. In this case, the system is called hard [But97].
On the opposite, if not respecting deadlines keeps the system safe, the system
is called soft. In this study, we only consider hard real-time systems where time
constraints are strict.

A real-time system is a task set: each task is a process designed to react to
an external incoming event. The systems we study use resources and run on
centralized multiprocessor architectures. All processors are identical; tasks are
preemptive and can move from a processor to another one at any time. Each
task τi is specified by time characteritics: its first activation date ri, its deadline
Di, its period Ti, and its execution time Ci [LL73]. We assume that tasks are
periodic and not reentrant: ∀i ∈ [1, n], Di ≤ Ti.

The operational validation of a real-time system is reached by proving that
no task misses deadline, i.e by proving that there exists at least one time valid
scheduling sequence for the system. This proof is obtained by feasability con-
ditions or simulations. Validation is performed off-line for systems sharing re-

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 23–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 G. Largeteau, D. Geniet, and É. Andrès

sources which run on multiprocessor architectures, since there exists no neces-
sary and sufficient feasability condition in this case [Mok83]. Off-line methods
are usually based on state models (Petri nets, automata)[ALU94][CHO96]. Each
transition is associated with the same duration and constraints are expressed as
numbers of transitions. Therefore time is discrete in these models. In [LG02], we
have defined an implicit timed model, based on finite automata, that enumer-
ates states of systems and therefore involves both space and time combinatorial
explosion (about 2 h. 30 min. for 1000 states and 5000 transitions).

Observing the graphs of the automata we obtained in this approach, we have
conceived a new model, based on discrete geometry, that is presented in this
work. Our goal is to reduce notably both time and space combinatorial explo-
sion in the validation process. In this model, we associate each task with a
geometrical figure which only depends on time characteristics r, C, D, T. Geo-
metrical operations (extrusion, cartesian product, intersection) allow to model
concurrency and synchronization in a geometrical way. This model makes state
enumeration implicit and therefore decreases both space and time combinato-
rial explosion while keeping a strong expression capacity (about 0.2 s. for 1000
discrete points). We define the geometrical model for a single task in section 2.
In section 3, we present compositional operations to integrate both parallelism
and synchronization in the model. Section 4 is dedicated to the presentation of
a software implementing this modeling process.

2 Model Definitions

2.1 A Two Dimensional Discrete Model to Represent Single Tasks

A task is usually modeled by an automaton (see figure 1). Each transition of
this automaton is associated with a duration of one time unit (time is discrete).
A task state is defined by the execution progress x=C(t) of the task and the
total time t since the system activation. Therefore, we consider, for each task, a
two-dimensional space (t, c): t adresses absolute time and c adresses x.

• •

• •

••

• • •

• •

•

ri,1 di,1

x

a

a

a

a

a

a

time

time

0

a

a

a

Fig. 1. Automaton model for task τ (r=2,C=3,D=5,T=7)

Discrete Geometry Applied in Hard Real-Time Systems Validation 25

time

DC

C D

TTr

x instance 2instance 1

Fig. 2. A trace of task τ (r=2,C=3,D=5,T=7)

A task execution corresponds to the successive executions of its instances. At
time t, k instances of task τ (r,C,D,T) are completed (corresponding to k × C

time units of CPU owning) and the (k + 1)th instance is running (Ck+1(t) time
units of past CPU owning). So, at time t, C(t)=k × C + Ck+1(t) time units
have been executed. During its execution, an instance of task τ goes through
several states whether it owns the CPU or not: the initial state e0 of τ ’s first
instance is (r, 0), its last state is (r + T,C). The final state of any instance is
the first state of the next instance. The final state ek of the kth instance of τ is
(ek−1 + (T,C)). We denote rk = r + k × T the activation date of the kth task’s
instance of τ .

A task execution is then totally defined by the set of all instance states. This
set is the graph of a function in space (t, c). This function is called ”trace”.
Figure 2 is a discrete representation of the automaton sequence of figure 1. Note
that for τ , this function is not unique.

Let us now characterize traces. Since tasks cannot be parallelized, a task
cannot be in more than one state at once and its state can not be undefined.
Therefore, a task trace is a mapping between time and task execution progress.
This mapping is an increasing function: either the task is progressing during
execution; or the task is suspended and its execution progress state keeps the
same value. Moreover, during any time interval [t,t+1], no task can progress
more than one step in one time unit since it is the maximal CPU time that can
be allocated to the task for its execution during this interval.

Definition 1. We call of task τ an increasing mapping Tr(τ):

Trτ : Z+ → Z+

t → Trτ (t)
such that ∀t ≥ 0, T rτ (t + 1) ∈ {Trτ (t), T rτ (t) + 1}.

Task τ must deal with its temporal characterisation (r,C,D,T): this property
imposes geometrical constraints on execution traces of τ (see Figure 3). Some
task traces are compatible with task operational charateristics: they are ”valid
task traces”. Others are not compatible: they are unvalid.

trace

26 G. Largeteau, D. Geniet, and É. Andrès

r T T

instance 1 instance 2x

time

C

C

Fig. 3. Discrete model for two instances of task τ (r=2,C=3,D=5,T=7)

63

1

1
2

0
0

2
τ1

time

τ2

b)

1

1 2 30

0
1

21 3 4 5 60
0

2
τ1 τ2

time time

a)

Fig. 4. Examples: τ1 (r=0, C=1,D=2,T=3), τ2 (r=0,C=2,D=3,T=6)

Definition 2. A of τ (r,C,D,T) is an execution trace TrτV such
that:

TrτV([0,r]) = {0}
TrτV([rk,rk+D]) = [(k-1)×C,k×C]
TrτV([rk+D,rk+1]) = {k×C}

We call TV (τ) the set of τ ’s valid traces. If τ misses no deadline, no instance
of τ runs on time intervals [0,r] and [rk+D,rk+1]. Therefore, traces TrτV are
constant functions over these intervals. The equation TrτV(rk+D)=k×C means
that the execution requirement Ci of the kth instance of τi is completed before
its deadline. Such a trace is a valid trace. We can then characterize the set Ω(τ)
which collects all points of valid traces.

Definition 3. The validity space Ω(τ) of a task τ is:

Ω(τ) =
⋃

ψ∈TV (τ)

{(t, ψ(t))}.

We note T (Ω(τ)) for TV (τ).
Figure 3 presents the validity space for the two first instances of a task. Each

valid state of τ is associated with a point of Z2.

2.2 Concurrency Modeling : (n + 1) Dimensional Discrete Model

Let Γ=(τi)i∈[1,n] be a set of tasks, designed to run concurrently. The state of Γ
at time t is defined by the states of all τi. At time t, Γ is valid if and only if all
tasks of Γ are valid.

valid trace

Discrete Geometry Applied in Hard Real-Time Systems Validation 27

Definition 4. A valid state P of a system Γ at time t is defined by:

P = (t, x1, ..., xn)/ ∀i ∈ [1, n], (t, xi) ∈ Ω(τi)

Therefore, the space of Γ ’s valid states is (n+1)-dimensional (see Figure 4).

Ω(Γ) = {(t, x1, ..., xn)/ ∀i ∈ [1, n] (t, xi) ∈ Ω(τi)}

2.3 Computing Ω(Γ)

We consider a system Γ of n tasks.

Geometrical Basic Notions [And03]:
Two discrete points p and q in n dimensions are k-neighbour, for 0 ≤ k ≤ n,

if ∀1 ≤ i ≤ n, |pi − qi| ≤ 1 and if k ≤ n −
n ∑

i=1

|pi − qi|. A k-path in a discrete

object A is a discrete A point list such that two consecutive points of this list
are k-neighbour (a task trace is a 0-path in 2-dimension). If there exists a k-
path in a discrete object A, A is said k-connected. Ak-component is a maximal
k-connected discrete object.

Definition 5. Let I={i1, ..., i|I|} (i1 < i2 < ... < i|I|). We define the injection
operation JI,n in the following way: JI,n : Z|I| → Zn+1

(x1, ..., x|I|) →
n+1︷ ︸︸ ︷

(0, ..., 0, x1, 0, ..., 0, xj , 0, ..., 0, x|I|, 0, ..., 0)
i1 ij i|I|

Notations:
- Ji,n=J{1,i+1},n: (a,b) → (a,0,..,0,b,0...,0)

1 i+1
- ΛI,n is the following cartesian product:

ΛI,n = Zi1−1 × {0} × Zi1−i2−1 × {0} × ... × Zi|I|−i|I|−1−1 × {0} × Zn+1−i|I| .

- Λi,n is the cartesian product Λi,n = {0} × Zi−1 × {0} × Zn−i=Λ{1,i+1},n.

Definition 6. We define the interleaved cartesian product J Λ
I,n: Z|I| → P(Zn+1)

(x1, ..., x|I|) → {JI,n((x1, ..., x|I|)) + λ, λ ∈ ΛI,n}

Notations:
- J Λ

i,n=J Λ
{1,i+1},n={Ji,n((a, b)) + λ, λ ∈ Λi,n}.

Definition 7. We call ”concurrent product” (denoted ⊗) of Ω(τ1) and Ω(τ2)
the set Ω(τ1) ⊗ Ω(τ2)= J Λ

1,n(Ω(τ1)) ∩ J Λ
2,n(Ω(τ2)).

28 G. Largeteau, D. Geniet, and É. Andrès

time

τ17

4

10 12

τ2=(0,4,10,12)τ1=(0,7,11,12)

τ2

time

τ1

time

τ1

J Λ
1,2(Ω(τ1)) J Λ

2,2(Ω(τ2))

τ2

time

τ211 12

Fig. 5. Example: J Λ
1,2(Ω(τ1)) and J Λ

2,2(Ω(τ2))

Remarks:
-The operation ⊗ is associative, therefore we can generalize the notation:

Ω(τ1, ..., τn) =
i=n⊗
i=1

Ω(τi)

- ∀ J ∈ J Λ
i,n((a, b)), ∀k ∈ [1, i − 1] ∪ [i + 1, n],∃ xk ∈ Z such that:

J = (a, x1, ..., xi−1,b, xi+1, ..., xn)

- Projection Πi: (y1,...,yi+1,...,yn+1) → (y1,yi+1) is a reverse operation of J Λ
i,n:

Πi(J Λ
i,n(a,b))={(a,b)}.

The following theorem says that the (n + 1) dimensional discrete model is
obtained as an intersection of our interleaved cartesian product. It provides a
direct algorithm.

Theorem 1. Ω(Γ) =
i=n⊗
i=1

Ω(τi).

Proof : Let us show that
i=n⊗
i=1

Ω(τi) ⊂ Ω(Γ):

Let P=(t, x1, x2,xn) ∈
i=n⊗
i=1

Ω(τi). The definition of ⊗ gives:

P=(t, x1, x2,xn) ∈
⋂

i∈[1,n]

(
J Λ

i,n

(
Ω(τi)

))
. Since P belongs to an intersection

set, we get: ∀i ∈ [1, n], P ∈ J Λ
i,n

(
Ω(τi)

)
. Using the two-dimensional projection

on τi-space (t,τi): ∀i ∈ [1, n], Πi(P) ∈ Πi

(
J Λ

i,n

(
Ω(τi)

))
= Ω(τi). And then

∀i ∈ [1, n], (t, xi) ∈ Ω(τi). Therefore, P ∈ Ω(Γ).

Let us show that Ω(Γ) ⊂
i=n⊗
i=1

Ω(τi):

Let P=(t, x1, x2,xn) ∈ Ω(Γ). We consider the projection of P on each
plane (t,τi): ∀i ∈ [1, n] Πi(P) ∈ Ω(τi). We then consider J Λ

i,n for each Πi (P):
∀i ∈ [1, n] J Λ

i,n

(
Πi(P)

)
⊂ J Λ

i,n

(
Ω(τi)

)
. Finally, we consider the intersection of

all sets we have obtained:

Discrete Geometry Applied in Hard Real-Time Systems Validation 29

system state
τ2 τ2

time

τ1τ1

time

Fig. 6. Example: geometrical modeling for a two tasks system, Ω(τ1) ⊗ Ω(τ2)

u1

x2 (τ2)

u2

C1

C2

x1 (τ1) R-exclusion zone
u1
1(2)

u1
1(1)

u1
2(1) u1

2(2) u2
2(2)u2

2(1)

Fig. 7. Example: both τ1 and τ2 use resource R

⋂
i∈[1,n]

(
J Λ

i,n

(
Πi(P)

))
⊂

⋂
i∈[1,n]

(
J Λ

i,n

(
Ω(τi)

))
Since

⋂
i∈[1,n]

(
J Λ

i,n

(
Πi(P)

))
=

{(t, x1, x2,xn)} = {P}, we get: P ∈
i=n⊗
i=1

Ω(τi). �

2.4 Synchronization Integration

In real-time systems, tasks use critical resources and the processor number is
limited. In next parts, we integrate these constraints in our modelisation.

Resource Sharing
Resources must be used in mutual exclusion : only one task can use resource
R at time t. Therefore, some states of Ω(Γ) become invalid from the resource
sharing point of view. On a geometric point of view, the kth instance of a task
corresponds to the task execution progress interval [Ci×k, Ci×k+Ci]. We define
uk(1) and uk(2) such that this instance uses R during the execution time interval:
]uk

i (1),uk
i (2)[⊂ [Ci×k, Ci×k+Ci].

We denote by ui the time interval union
⋃

k∈N

]uk
i (1),uk

i (2)[, corresponding to

all resource requirement intervals for all instances of τi (see Figure 7).
Since a task cannot own the resource if another task already uses it, two tasks

cannot be in R critical section at the same time. Then if P=(t,x1, ..., xn) and xi

∈ ui, we must get ∀j �= i, xj �∈ uj . Therefore, for a valid state P=(t, x1, ..., xn)
of Γ , the following property stands: |{xi/xi ∈ ui}| ≤ 1. The validity space of Γ
respecting resource R sharing is (see figure 8):

30 G. Largeteau, D. Geniet, and É. Andrès

ΩR(Γ) = {(t, x1, ..., xn) ∈ Ω(Γ)/|{xi/xi ∈ ui}| ≤ 1}

Here, we deal only with one resource R. For many resources, since resources are
independant, the technique can be applied by induction. Let ΓR=(τj)j∈IR

be the
set of tasks sharing resource R (we note IR the set of indices of tasks sharing
R). The states of ΓR which are associated with a simultaneous use of R are
unvalid. The R-exclusion zone Ω(R) of R collects all states of ΓR corresponding
R misuses. Ω(R) is part of the subspace associated with all tasks sharing R,
since it implies the simultaneous run of at least two of these tasks.

Definition 8. The R-exclusion zone is (see Figure 7):

Ω(R) = {(xi)i∈IR
/ |{xi/xi ∈ ui}| > 1}.

A state of Ω(R) only concerns tasks of ΓR. A state s=(t, x1, ..., xn) is unvalid if
ΠΓR

(s) ∈ Ω(R). Therefore, the set ηR = {(t, x1, ..., xn)/t ∈ Z, |{xi/xi ∈ ui}| >
1} of unvalid states can be obtained thanks to a concurrent cartesian product
and an extrusion operation.

Theorem 2. ηR = Extr
(
Z,J Λ

IR,n(Ω(R))
)
.

Proof : This theorem comes directly from the definitions of Ω(R), the extrusion
operation and interleaved cartesian product operation. Ω(R) collects all unvalid
states of ΓR: it is a |IR|-dimensional object. The interleaved cartesian prod-
uct associates these states with all possible states of Γ \ ΓR. Then all states
of Γ that are unvalid in the R-sharing point of view are reached. J Λ

IR,n(Ω(R))
is an n-dimensional object. Now one must integrate that these states are al-
ways unvalid. This is done by extruding this objet following the time direc-
tion (Z). This operation collects all R-sharing unvalid states of Γ . Then we get
ηR = Extr

(
Z,J Λ

IR,n(Ω(R))
)
. �

All states of ηR are not valid from the resource sharing point of view. Valid
states of the application are then in Ω(Γ) but not in ηR.

Theorem 3. ΩR(Γ) = Ω(Γ) \ ηR.

Therefore, the set of valid traces including resource sharing is:

T (ΩR(Γ))={ψ ∈ T (Ω(Γ))/∀t ∈ Z+, ψ(t)= (x1, ..., xn), (t, x1, ..., xn) ∈ ΩR(Γ)}.

Processor Sharing
While building ΩR(Γ), we have not considered the number of processors. How-
ever, this parameter makes each trace ω in TR(Γ) valid or unvalid according to
the minimal number of processors useful to execute ω.

During an execution, the number of active processors is constant between
two consecutive context switches. To decide the validity of a trace, we only have
to look at it at context switch times. Let us note by q the scheduling quantum.
If there are k running tasks between two given context switches a and b, the
trace is called k-concurrent between a and b.

Discrete Geometry Applied in Hard Real-Time Systems Validation 31

τ2
τ2

τ1

time

τ1

τ2

τ1

time

Fig. 8. Geometrical model of a system including resource sharing

Definition 9. A trace ψ ∈ T (ΩR(Γ)) is k-concurrent between two context switch
times i×q and (i+1)×q if and only if: ψ(i×q)=(i×q,(xi)i∈[1,n]) and ψ((i+1)×q)
=((i+1)×q,(yi)i∈[1,n]) ⇒

∑
i∈[1,n] |xi − yi| ≤ k × q.

We said that discrete points ψ(i × q) and ψ((i + 1) × q) are k-concurrent.
This definition of k-concurrency in a n+1 dimensional space corresponds to the
definition of the n−k-neighbourhood. A k-concurrent trace is then a n−k-path
in ΩR(Γ). We denote by TR,k(Γ) the set of k-concurrent traces of T(ΩR(Γ)).

Definition 10. A set ΩR(Γ) is k-concurrent if there exists at least one k-
concurrent trace ψ in TR(Γ).

Remark: If a set ΩR(Γ) is k-concurrent, then it is a n−k-component and there
exists at least one valid sheduling sequence for Γ on a k processor architecture.

2.5 Feasability Decision

For a system running on a k processor architecture and sharing a resource R, a
valid scheduling is a k-concurrent trace in TΩR(Γ). The feasability decision is
reached by evaluating the predicate: TR,k(Γ) �= ∅.

3 Implementation

We have developed the software GemSMARTS (Geometric Scheduling Modeling
and Analysis of Real-Time Systems) which computes the set ΩR(Γ). We have
tested a discrete data structure implemented through classical matrices. Since
we avoid enumeration, we get more efficient computing times : using automata,
models are obtained after at least 2 hours instead of 1 second at most using
discrete geometry.

Figure 9 shows ΩR(Γ) for a two-tasks system sharing a resource.
While avoiding enumeration in the discrete model, we reach very efficient

computation time. As a comparison, for a seven task system sharing four re-
sources, computing the automaton model takes more than 2 hours while the
computation of the discrete modele last less than 1 second.

32 G. Largeteau, D. Geniet, and É. Andrès

τ2

time

τ1

Fig. 9. System geometrical model:τ1=(0,7,10,12), τ2=(0,3,6,6)

4 Conclusion

Validity spaces are useful to model hard real-time systems running on multi-
processor architectures and sharing resources. Feasability of task systems and
optimal numbers of processors can be computed thanks to the k-concurrency
concept.

Feasability is usually decided using state based model and model checkers
[LG02]. Using validity spaces involves a noteworthy improvement: the time saved
on a time free automata model is about 85%. The data structure we have tried
(matrices) is useful to implement our model and developed algorithms are al-
ready more efficient than the previous ones (using automata) although they are
far from being optimized. We have reached a limited time complexity depend-
ing mainly on the number of tasks whereas classical models follow complexities
which depend on time. This method allows to drive back both space and time ex-
plosion.We are studying both space and time complexities for optimized version
of the geometrical algorithms.

Ongoing works concern definitions of both topological and geometrical prop-
erties to precisely characterize scheduling sequences. We plan, for example, to
define topological properties for validate on-line classical scheduling (RM, ED,
and so on), in order to propose multiprocessor versions of on-line validation
techniques integrating resource sharing.

References

[ALU94] R.Alur, D.Dill: A theory of timed automata. Theoretical Computer Science,
vol. 126, pp 183-235.(1994).

[And03] E.Andres: Discrete linear objects in dimension n: the standard model.
Graphical Models 65(1-3), pp 92-111. (2003).0

[But97] G. Buttazzo: Hard real-time computing systems: Predictable scheduling al-
gorithms and applications. Kluwer Academic Publishers. (1997).

[CHO96] A.Choquet-geniet, D.Geniet, F.Cottet: Exhaustive computation of scheduled
task execution sequences of real-time application. Proc FTRTFT’96.(1996)

Discrete Geometry Applied in Hard Real-Time Systems Validation 33

[LL73] C.L. Liu et J.W. Layland : Scheduling algorithms for multiprogramming in
real-time environnement. Journal of the ACM, vol 20, pp 46-61.(1973)

[LG02] G.Largeteau, D.Geniet: Term Validation of Distributed Hard Real-time Ap-
plications. Conference on Implementation and Application of Automata.
(2002).

[Mok83] A.K.Mok: Fundamental design problems for the hard real-time environ-
ments. Ph.D. MIT.(1983).

Hierarchical Watersheds Within the
Combinatorial Pyramid Framework

Luc Brun†, Myriam Mokhtari†, and Fernand Meyer‡

† GreyC CNRS UMR 6072, Équipe Image - Ensicaen,
6, Boulevard du Maréchal Juin,
14050 CAEN Cedex - France

{luc.brun, myriam.brun}@greyc.ensicaen.fr
‡ Centre de Morphologie Mathématique (CMM),

35, rue Saint Honoré,
77305 Fontainebleau Cedex - France

Fernand.Meyer@cmm.ensmp.fr

Abstract. Watershed is one of the most popular tool defined by math-
ematical morphology. The algorithms which implement the watershed
transform generally produce an over segmentation which includes the
right image’s boundaries. Based on this last assumption, the segmen-
tation problem turns out to be equivalent to a proper valuation of the
saliency of each contour. Using such a measure, hierarchical watershed
algorithms use the edge’s saliency conjointly with statistical tests to deci-
mate the initial partition. On the other hand, Irregular Pyramids encode
a stack of successively reduced partitions. Combinatorial Pyramids con-
situte the latest model of this family. Within this framework, each par-
tition is encoded by a combinatorial map which encodes all topological
relationships between regions such as multiple boundaries and inclusion
relationships. Moreover, the combinatorial pyramid framework provides
a direct access to the embedding of the image’s boundaries. We present
in this paper a hierarchical watershed algorithm based on combinatorial
pyramids. Our method overcomes the problems connected to the pres-
ence of noise both within the basins and along the watershed contours.

1 Introduction

Segmentation and contour extraction are important tasks in image analysis.
Among the multitude of methods, the watershed transformation [17, 12, 14, 8, 4]
arises as a popular image segmentation algorithm. This method usually based on
the gradient of the image provides a partition of the image into a set of basins
corresponding to local minima of the gradient and a set of watershed pixels.
These pixels may be roughly understood as the borders of the basins. Using
a flooding process [17] watershed pixels are defined as the places where water
coming from several basins merges. Watershed algorithms presents the main
advantage of providing closed curves leading to a proper definition of regions.
A well known drawback of the watershed algorithms is the over segmentation

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 34–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hierarchical Watersheds Within the Combinatorial Pyramid Framework 35

often produced by these methods (e.g. [17]). Since the contours appear to be
correct, the over segmentation problem turns out to be equivalent to a proper
valuation of the saliency of each contour. This contour’s saliency is generally
used conjointly with an homogeneity criteria in order to derive a hierarchy of
partitions.

This hierarchy of partitions may be encoded using Irregular Pyramids [13,
10, 3]. These data structures encode each partition as a graph whose nodes and
edges respectively correspond to regions and region’s adjacencies. Usual Irreg-
ular Pyramids [13] are made of a stack of simple graphs (i.e. graphs without
multiple edges nor self-loops). Within this framework several contours between
two regions are encoded by a single edge which thus simply encodes the ex-
istence of at least one contour between the two regions. However, within the
hierarchical watershed framework the contours of the partition play a major role
in the decimation process. The explicit encoding of each contour of the partition
by one edge requires thus to encode an irregular pyramid made of non simple
graphs. Such enriched graphs may be created using the Dual graph reduction
scheme [10]. Within this framework, the reduction operation is performed in
two steps: First, the contraction of a set of edges identifies a set of vertices.
This operation may create redundant edges such as empty self-loops or double
edges [10]. These redundant edges are characterized in the dual of the graph and
removed by a set of edge removals. Applied to the watershed transform such a
reduction scheme provides a graph where each vertex encodes a basin and each
edge corresponds to one contour between two basins.

Combinatorial Pyramids inherit all the useful properties from the dual graph
pyramids with several additional advantages: Firstly, within the combinatorial
pyramid framework the dual graph may be implicitly encoded and thus updated.
This property allows to decrease both the memory and computational time re-
quirements. Secondly, combinatorial pyramids preserve the local orientation of
edges around vertices and faces. This last property is used to retrieve efficiently
the set of points encoding a contour.

The aim of this paper is to present one implementation of a hierarchical
watershed algorithm within the combinatorial pyramid framework.The paper is
thus organized as follows: We first present the main features of combinatorial
pyramids (Section 2). Then, the specific advantages of this model within this
framework are illustrated by a new hierarchical watershed construction scheme
using specific features of combinatorial pyramids (Section 3).

2 Combinatorial Pyramids

A combinatorial pyramid corresponds to a stack of successively reduced com-
binatorial maps where the initial combinatorial map G0 usually encodes a 4
connected planar sampling grid. A combinatorial map G = (D, σ, α) may be un-
derstood as an encoding of a planar graph. The construction of a combinatorial
map from a plane graph is as follows: first edges are split into a set of half-edges
called darts, the set of darts being denoted by D. Two darts sharing the same

36 L. Brun, M. Mokhtari, and F. Meyer

edge are connected by the involution α which maps each of the two darts to the
other one. The vertices of the graph are encoded by the permutation σ whose
cycles correspond to the sequence of darts encountered when turning counter-
clockwise around each vertex. Each vertex of the graph is thus encoded by one
cycle of the permutation σ. In the same way each edge of the graph is encoded
by one cycle of α. In what follows, the cycles of σ and α containing a dart d will
be respectively denoted by α∗(d) and σ∗(d). An introduction to combinatorial
maps and Combinatorial Pyramids may be found in [2, 3].

As in the dual graph pyramid scheme [10] (Section 1) the two operations used
to reduce combinatorial maps within the pyramid are the contraction and the
removal. In order to preserve the number of connected components of the initial
combinatorial map, we forbid the removal of bridges and the contraction of self-
loops. Such contractions may be avoided by using a contraction kernel defined as
a forest of the initial combinatorial map. As mentioned in the introduction of this
paper the contraction operation may create redundant edges such as empty self
loops and double edges. A contraction kernel is thus followed by a removal kernel
removing the eventual empty-self loops and double edges. A reduction step in
the pyramid involves thus the application of 2 kernels : One contraction kernel
and one removal kernel. Note that, while a contraction kernel is application
dependent, the removal kernel is automatically defined from one combinatorial
map. Indeed, within our reduction scheme a contraction kernel specifies a set of
regions to be merged while the removal kernel is restrained to the removal of
redundant edges.

Given an initial combinatorial map G0 encoding the 4 connected planar
sampling grid and a sequence of contraction or removal kernels K1, . . . ,Kn

each reduced combinatorial map Gi = (Di, σi, αi) may be build from Gi−1 =
(Di−1, σi−1, αi−1) and the kernel Ki [3]. Note that we have Di = Di−1 − Ki.
The set of darts of any reduced combinatorial map is thus included in the ini-
tial set of darts D0. The resulting pyramid is usually stored explicitly as a
sequence of successively reduced combinatorial maps (G1, . . . , Gn). However, we
have shown [2, 3] that within the combinatorial pyramid framework all the ker-
nels and all the reduced combinatorial maps may be encoded efficiently by stor-
ing for each initial dart in G0, the maximal level where this dart survives in the
pyramid and the operation applied at each level. This implicit encoding may be
performed by :

1. one function state from {1, . . . , n} to the 2 states {Contracted, Removed}
which specifies the type of each kernel.

2. one function level defined for all darts in D0 such that level(d) is equal to
the maximal level where d survives:

∀d ∈ D0 level(d) = Max{i ∈ {1, . . . , n + 1} |d ∈ Di−1}

a dart d surviving up to the top level has thus a level equal to n + 1.

Given the function level, each kernel Ki may be efficiently retrieved as the set of
darts whose level equals to i. Moreover, any reduced combinatorial map may be

Hierarchical Watersheds Within the Combinatorial Pyramid Framework 37

retrieved from this implicit encoding in a time proportional to the total length
of the boundaries encoded by this combinatorial map [2, 3].

The explicit encoding of the pyramid (G0, . . . , Gn) may thus be replaced
by (G0, level, sate). Moreover, if the initial combinatorial map G0 encodes a
planar sampling grid, the permutations σ0 and α0 may be implicitly encoded
using any convention on the numbering of darts. The pyramid may thus be
simply encoded by (D0, level, state). On the other hand, the current top level
combinatorial map is frequently accessed during the construction of the pyramid.
We thus decided to store additionally a combinatorial map encoding the top
level of the pyramid. This combinatorial is updated at each level during the
construction of the pyramid. Our encoding of the pyramid is thus defined by
(Gn,D0, level, state) where Gn denotes the current top level combinatorial map.
This choice allows an efficient construction scheme of the pyramid while avoiding
the explicit encoding of all the intermediate combinatorial maps.

Moreover, we have shown [2] that using the two functions level and state
we can associate to each edge α∗

i (d) an ordered sequence of 1-cells [18] (also
denoted cracks or linels) which encodes the embedding of the edge, i.e. the
boundary between the two regions associated to the vertices σ∗

i (d) and σ∗
i (αi(d)).

The sequence of linels of one contour is retrieved in a time proportional to its
length [2].

The construction of a combinatorial pyramid is performed by successive sim-
plifications of the top level combinatorial map. From this point of view, combi-
natorial pyramids may be compared to other topological data structures [6, 9].
However, combinatorial pyramids differ from these alternative encodings on two
points : Firstly, the implicit encoding provided by the function level allows us
to encode the whole sequence of reduced combinatorial maps rather than the
top level one. Secondly, alternative data structures [6, 9] encode the geometry
of the partition thanks to an additional geometrical model cooperating with
the topological one in order to provide a full description of the partition. Using
combinatorial pyramids, the geometrical embedding of the partition is provided
without additional memory requirements by the function level.

3 Hierarchical Watersheds with Combinatorial Pyramids

Within the combinatorial pyramid framework, the initial combinatorial map is
usually associated to the 4 connected sampling grid. Given a m × n grey level
image, we build an initial combinatorial map G0 encoding the m × n sampling
grid and we store within each vertex the grey value (or altitude) of the associated
pixel. This vertex’s altitude is the basic feature used to compute the watershed
transform on G0.

3.1 Building the Initial Watershed Partition

Several methods [17, 5, 8] have been proposed to build the basins of a graph. The
topological watershed method designed by Bertrand and Couprie [5] produces

38 L. Brun, M. Mokhtari, and F. Meyer

a grey level image W whose minima encode the basins. The construction of
a contraction kernel from such an image may be performed by computing a
spanning tree [10] which covers each basin. The union of all trees forms the
contraction kernel. Using Meyer’s [12] or Vincent [17] algorithms the basins are
built iteratively using a flooding process. The main property satisfied by these
algorithms are :

1. the assignment of a vertex to a label (watershed or basin) is performed only
once,

2. each vertex marked as belonging to a basin is adjacent to at least one vertex
already aggregated to this basin.

Starting from an empty kernel, condition 2 insures that for each vertex ad-
jacent to a basin we can find one edge connecting it to this basin. We can thus
add this edge to the contraction kernel. Moreover, the contraction kernel may
contain a loop only if one vertex is aggregated twice to a same basin which is
refused by condition 1. The contraction kernel can thus, in this case, be built in
parallel with the watershed transform.

Using any of the above methods we can thus build a contraction kernel K1
whose trees span each basin of G0. The contraction of K1 contracts each of these
trees into a single vertex. Since each vertex of G0 contains the altitude of the
associated pixel, we can compute during the contraction process the minimal
altitude of each tree and store the resulting value within the contracted vertex.
Each vertex of G1 associated to a basin stores thus the minimal altitude of this
basin.

The kernel K1 is followed by a removal kernel K2 in order to remove redun-
dant edges(Section 2). Let us denote by G2 the combinatorial map obtained from
the successive applications of K1 and K2. Since the kernel K2 does not imply
any merge of vertices, the vertice’s values computed during the contraction step
remain unchanged. Moreover, since the trees of K1 span only the basin of G0
the vertices of G2 correspond either to basins or to watershed pixels.

3.2 Building a Partition into Basins

Hierarchical watershed algorithms are generally based on a partition of the im-
age into a set of basins. However, watershed algorithms produce a partition of
the image into a set of basins and a set of watershed pixels each of these pixels
being encoded by one vertex in G2. The explicit encoding of watershed vertices
induces two types of problems within this framework: First of all if two basins
are separated by a thin watershed line the adjacency between the two basins is
not encoded by a single edge but by a sequence of two edges encoding for each
watershed vertex its adjacency to the two basins. Secondly, watershed vertices
may form thick connected components [17, 14] where many watershed vertices
are incident to 0 or 1 basin. In such a case, the adjacency between the basins
surrounding such a component and thus the existence and location of the con-
tours between the basins is relative to a labeling of the watershed vertices to the
different basins.

Hierarchical Watersheds Within the Combinatorial Pyramid Framework 39

Two recent algorithms [11, 9] have been proposed to encode an image par-
tition defined by pixel’s boundaries. These two approaches encode a sequence
of pixels defining a boundary between two basins by a single edge. However,
each approach suffers of different drawbacks. The method presented by Mar-
chadier [11] must pre-process the boundary pixels in order to avoid some config-
urations. This last step modifies the partition without taking into account the
image’s content. The method present by Köethe [9] may violate some basic topo-
logical properties by contracting basins into single points. Finally, using either
of these methods boundary pixels do not belong to any basin. Some well known
properties of an image partition into 4 or 8 connected regions may thus be vio-
lated. For example, the method presented by Köethe encodes 4 connected basins
but may produce partitions with more the 4 basins incident to a same point.

To overcome these drawbacks we designed [4] an algorithm which aggregates
the watershed vertices to the basins using a flooding process. This algorithm
ensures that each watershed vertex aggregated to a basin may be connected
to the minimum of this basin by an always descending path. Moreover, this
algorithm satisfies the same conditions than Meyer’s and Vincent’s algorithms
(conditions 1 and 2 Section 3.1). We can thus build a contraction kernel K3
during the aggregation process. As previously the contraction kernel is followed
by a removal kernel K4. The final combinatorial map is denoted by G4.

The above method is similar to the minima extension presented by Bertrand [1].
However, both methods differ on the following point: Roughly speaking, the
greedy algorithm presented by Bertrand preserves the minimal altitude one as
to climb to connect two adjacent basins. This method allows to attach a global
pass value value to each couple of adjacent basins. Our method [4] preserves the
minimal altitude one has to climb to connect two adjacent basins while passing
by one watershed pixel. The aim of this method is to attach one pass value to
each elementary element of the border between two adjacent basins (see below).

3.3 From Watershed Values to Linel’s Pass Values

The combinatorial map G4 encodes a partition of the image into a set of basins.
Each edge between two vertices of G4 encodes a contour between two basins and
may be associated to a sequence of linels encoding the embedding of the asso-
ciated boundary (Section 2). Each linel along the contour separates two pixels
belonging to each basin. Moreover, since each basin is initially surrounded by
watershed pixels, at least one of these two pixels was initially marked as a wa-
tershed. Let us consider a linel l between two basins B1 and B2 of G4 separating
two pixels P and Q belonging respectively to B1 and B2. If P and Q were both
initially marked as watershed pixels, there is by construction [4](Section 3.2) two
descending paths from P to the minimum of B1 and from Q to the minimum
of B2. If one of the two pixels, say P , was not initially marked as a watershed
we can induce from the construction scheme of the basins [14] that P is con-
nected to the minimum of B1 by an always descending path. The maximum of
the altitudes h(P) and h(Q) represents thus the minimal altitude one has to
reach to connect the minima of B1 and B2 while passing by P and Q. This value

40 L. Brun, M. Mokhtari, and F. Meyer

is associated to each linel and called a linel’s pass value. These valuated linels
correspond intuitively to the values of the watershed pixels along the contours.
However the aggregation of the watershed vertices to the basins and the transfer
of the watershed pixels altitudes to the linel’s pass values allows us to overcome
the two drawbacks mentioned in Section 3.2.

3.4 From Linel’s Pass Values to Edge’s Pass Values

Given an edge α∗
4(d) of G4 let us consider the function Pv(t) which encodes the

sequence of linel’s pass values encountered along the contour associated to α∗
4(d).

The symbol t may be understood as the rank of the linel along the contour while
Pv(t) represents the pass value of the associated linel. The value usually deter-
mined from the function Pv within the hierarchical watershed framework [14] is
its minimum. Such a value may be associated to each edge of the combinatorial
map G4. However, the minimal linel’s pass value along a contour is sensitive to
the noise which may be present along it. Moreover, this choice does not take into
account the distribution of Pv and thus the saliency of the minimum.

In order to overcome this last drawbacks we propose to measure the saliency
of the different minima of the function Pv using the following decomposition: If
the function Pv contains less then a given number (fixed to 5 in our experiments)
of samples we consider that no reliable values on the saliency of the minima may
be defined and we fix the edge’s pass value to the minimum of the function Pv.
Otherwise, we use the volumic filters defined by Vachier [16] to compute the
saliency of the different minima as follows:

Given an edge α∗
i (d) of the current top level combinatorial map Gi, we con-

sider the function Pv associated to α∗
i (d) as a 1D relief which is progressively

flooded. When two 1D basins b1 and b2 merge along a maxima m the volume of
b1 and b2 are computed by:

∀j ∈ {1, 2} vol(bj) =
∑
t∈bj

m − Pv(t) (1)

The two basins b1 and b2 are then filled up to the altitude m and the process
continues on the updated signal. This process stops when the signal has only one
minimum left. Note that our method is based on a family of leveling functions.
Indeed, the signal used at step i of our algorithm is defined as Pvi(t) = ψi(Pv(t))
where ψi is the ith iteration of the leveling operator [16] ψ which merges the
basins separated by the lowest maxima and fills them up to the altitude of this
maxima.

Given the set {b1, . . . , bn} of 1D basins merged by our method we define the
global pass value of the contour as the minimal altitude of the basins with the
greatest volume:

pass value(α∗
i (d)) = Min

j∈{1,...,n}
{Depth(bj) |V ol(bj) = max

k∈{1,...,n}
V ol(bk)} (2)

where Depth(bi) and V ol(bi) denote respectively the minimal altitude of bi and
its volume (equation 1).

Hierarchical Watersheds Within the Combinatorial Pyramid Framework 41

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 10 20 30 40 50 60 70 80 90

signal 1signal 2selected minima

(a) edge’s pass value

a

dyn(a)

2
3

6
1

4 5

(b) edge’s dy-
namic

(c) merg-
ing

Fig. 1. (a) Two different signals with a same edge’s pass value. (b) Computation of
the dynamic of the edge a on a 1D example. (c) Enlargement of a contour

Intuitively, this choice corresponds toameasure of the saliencyof eachminimum
by the volume of the associated basin and a selection of the minimum of greatest
volume. Note that, in practical applications, the basin of maximal volume is
generally uniquely defined and the Min operator in equation 2 becomes useless.

Fig. 1(a) shows two signals with a same pass value. The signal 1 which has
only one minimum is valuated by the value of this minimum. On the other
hand, the small gaps at the beginning of signal 2 are not selected since the last
minimum has a higher altitude but a maximal volume.

3.5 From Edge’s Pass Values to Edge’s Dynamics

The computation of the edge’s pass values allows us to reduce the influence of
noise along the contour by affecting to each contour its more significant min-
imum. However, the contrast between two basins is relative both to the pass
values of their common contours and to the minima of the two basins. In order
to reduce the influence of noise inside the basins which may induce the presence
of many non significant basins, we use the contour’s dynamic introduced by Na-
jman [15]. Intuitively, the dynamic of a contour is defined by a flooding process
which progressively merges all basins. The dynamic of each edge is then defined
as the maximal difference between the edge’s pass value and the depth of the
two basins which merge along the contour. An illustration of the computation
of the edge’s dynamics on a 1D signal is provided in Fig. 1(b). Our algorithm
floods thus progressively the current combinatorial map by merging at each step
the two basins separated by the edge with the lowest pass value. The dynamic of
the edge is then computed and we store within the basin with the higher altitude
a pointer to the remaining basin. For example, in Fig. 1, before the flooding of
edge a, the basins 3 and 4 points respectively towards the basins 2 and 5. After
the merge of edge a, basin 5 points to the basin 2. These pointers allows us to
retrieve for each basin the deeper basin to which it has been merged in order
to compute the edge dynamic. This set of pointers defines a forest within the
set of basins, the root of each tree being retrieved in almost constant time using
union-find operations [7].

42 L. Brun, M. Mokhtari, and F. Meyer

Note that the computation of the dynamics is based on the edge’s pass value
(Section 3.4) rather than the minimum of each contour. This difference influence
both the computation of the dynamic at each step and the flooding process which
is based on the edge values. The edge’s dynamics computed by our algorithm
are thus different from the ones computed using the contour’s minima.

3.6 From Edge’s Dynamic to Hierarchical Segmentation

Within the hierarchical watershed framework, the edge’s dynamics are usually
computed once and combined with an other homogeneity criteria to merge pro-
gressively the different basins. This approach suffers from two main drawbacks:
First of all, as mentioned in Section 1 the edge’s dynamics are often used to
reduce the over segmentation of the image produced by watershed algorithms.
Due to the over segmentation, many contours of the partition are initially com-
posed of a small number of linels (e.g. 4 or 5). The reliability of a global value
from a such reduced sample of data is difficult to state (Section 3.4). Secondly,
the edge’s dynamics are not updated according to the updates of the partition
and may thus contain unreliable values all along the reduction process. However,
after each sequence of merge operations, the removal of redundant edges (Sec-
tion 2) either removes a contour or enlarges it by a concatenation with other
contours (Fig. 1(c)). Therefore, the length of a contour in the pyramid is an
increasing function of the level and the problems connected with the presence of
very short contours tends to disappear as we go up in the hierarchy. In order to
overcome the drawbacks connected with the poor reliability of the edge’s dynam-
ics at the first levels of the pyramid our method update the edge’s pass values
and edge’s dynamics after each sequence of contraction and removal operations.
More precisely, our method iterates the following steps:

1. Initialization step: Compute the edge’s pass value and goto step 3,
2. Update the pass value of edges adjacent to a merged region,
3. Compute edge’s dynamics,
4. Build a contraction kernel containing the edges with the lowest dynamic ;

apply the contraction kernel and remove redundant edges. If more than one
region left goto step 2.

Step 2 corresponds to a lazy programming. Indeed, since the computation
of an edge’s pass value requires only features of the associated contour, we can
ensure that an edge not adjacent to a region merged at the previous step keeps
its pass value. Step 3 performs the operations described in Section 3.5. Note
that, after the first iteration some vertices do not encode a single basin but a
set of merged basins. In this case, the minimal altitude of the vertex is defined
as the minimal altitude of the merged basins. Step 4 builds a contraction kernel
from the set of edges with a low pass value. Note that this set of edges may
defines loops in the current combinatorial map. In this case one of the edge of
each loop is not added to the kernel in order to respect the forest requirement of
a contraction kernel(Section 2). However, this case is rare in practical cases and
the contraction kernel generally include all the edges with the lowest dynamic.

Hierarchical Watersheds Within the Combinatorial Pyramid Framework 43

(a) original image (b) minimum (c) max. volume

Fig. 2. Two segmentations using different edge’s pass values

Fig. 2(b) and (c) shows two levels of two pyramids built by valuating edges
respectively with the minimal value of the contour and the edge pass value as
defined in Section 3.4. The levels in each pyramid have been selected such as the
white bar on the left of Fig. 2(a) forms only one region at the level above. Much
more meaningful details are preserved in Fig. 2(c) which thus better fit to the
intuitive notion of contour’s saliency. This phenomena is due to the edge’s pass
value which do not take into account minima with a small volume within the
profile of the contours. Note that the operations used to obtain Fig. 2(b) may be
performed without our hierarchical data structure (using e.g. [15]) while Fig. 2(c)
is obtained using both the geometrical and topological features of Combinatorial
Pyramids.

4 Conclusion

We have presented in this paper a new hierarchical watershed method based on
the edge’s dynamic. The different partitions of the hierarchy are encoded within
the combinatorial pyramid framework. The main advantages of combinatorial
pyramids within this framework are the encoding of each contour by one edge
and the efficient retrieval of each contour’s embedding as a sequence of linels.
We used these properties to define a new edge’s pass value which allows us to
overcome the noise which may be present within the contours. The presence of
noise within the basins is corrected using edge’s dynamics based on the edge’s
pass values previously computed. In future studies we are planing to combine the
edge’s dynamic with statistical tests on the content of the regions. More studies
should also be undertaken on the valuation of the minimal value of a contour.

References

[1] G. Bertrand. Some properties of topological greyscale watersheds. In procs. SPIE
Vision Geometry XII, volume 5300, pages 182–191, 2004.

[2] L. Brun. Traitement d’images couleur et pyramides combinatoires. Habilitation à
diriger des recherches, Université de Reims, 2002.

44 L. Brun, M. Mokhtari, and F. Meyer

[3] L. Brun and W. Kropatsch. Combinatorial pyramids. In Suvisoft, editor, IEEE
International conference on Image Processing (ICIP), volume II, pages 33–37,
Barcelona, September 2003. IEEE.

[4] L. Brun, P. Vautrot, and F. Meyer. Hierarchical watersheds with inter-pixel
boundaries. In Image Analysis and Recognition: International Conference ICIAR
2004, Part I, pages 840–847, Proto (Portugal), 2004. Springer Verlag Heidelberg
(LNCS).

[5] M. Couprie and G. Bertrand. Topological grayscale watershed transformation. In
SPIE Vision Geometry VI Proceedings, volume 3168, pages 136–146, 1997.

[6] G. Damiand. Définition et étude d’un modèle topologique minimal de
représentation d’images 2d et 3d. PhD thesis, Université des Sciences et Tech-
niques du Languedoc, Décembre 2001.

[7] C. Fiorio and J. Gustedt. Two linear time Union-Find strategies for image pro-
cessing. Theoretical Computer Science, 154(2):165–181, 5 Feb. 1996.

[8] R. Glantz and W. Kropatsch. Plane embedding of dually contracted graphs. In
Discrete Geometry for Computer Imager DGCI’2000, Lecture Notes in Computer
Science. Springer, Berlin Heidelberg, New York, 2000. In Press.

[9] U. Köthe. Deriving topological representations from edge images. In Geome-
try, Morphology, and Computational Imaging, 11th Intl. Workshop on Theoreti-
cal Foundations of Computer Vision, LNCS, Springer Verlag, volume 2616, pages
320–334, 2003.

[10] W. G. Kropatsch and H. Macho. Finding the structure of connected components
using dual irregular pyramids. In Cinquième Colloque DGCI, pages 147–158.
LLAIC1, Université d’Auvergne, ISBN 2-87663-040-0, September 1995.

[11] J. Marchadier, D. Arquès, and S. Michelin. Thinning grayscale well-composed
images. Pattern Recognition Letters, 25:581–590, 2004.

[12] F. Meyer. Topographic distance and watershed lines. Signal Processing, (38):113–
125, 1994.

[13] A. Montanvert, P. Meer, and A. Rosenfeld. Hierarchical image analysis using
irregular tessellations. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 13(4):307–316, APRIL 1991.

[14] L. Najman and M. Couprie. Watershed algorithms and contrast preservation.
In Discrete geometry for computer imagery, volume 2886, pages 62–71. LNCS,
Springer Verlag, 2003.

[15] L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierar-
chical segmentation. IEEETPAMI, 18(2):1163–1173, December 1996.

[16] C. Vachier and F. Meyer. A morphological scale-space approach to image segmen-
tation based on connected operators. In Workshop on Mathematics and Image
applications, Paris, September 2000.

[17] L. Vincent and P. Soille. Watersheds in digital spaces : an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(6):583–598, 1991.

[18] J. Webster. Cell complexes, oriented matroids and digital geometry. Theoretical
Computer Science, 305(1–3):491–502, Aug. 2003.

Optimal Design of 2D/3D Hierarchical
Content-Based Meshes for Multimedia

Işıl Celasun1, Rupen Melkisetoğlu1, and A. Murat Tekalp2

1 Dept. of Electronics and Communication Eng.,
Istanbul Technical University, Maslak,

Istanbul, 34469, Turkey
2 Dept. of Electrical Eng. and Center for Electronic Imaging Systems,

Univ. of Rochester, P.O.Box 270126,
Rochester, NY 14627, USA

Abstract. This paper proposes and compares methods for designing
hierarchical 2D meshes for representation of object-based video and hi-
erarchical 3D meshes for 3D objects used in telemedicine and multimedia
applications. The same approach has been applied both in 2D and 3D but
with different constraints. This representation consists of a hierarchy of
Delaunay meshes, obtained by recursive simplification of the initial fine
level-of-detail mesh geometry. There is no guarantee of an optimal mesh
in 3D that uses a specific given set of node points whereas in 2D it is
guaranteed that there is a unique 2D Delaunay mesh which uses all the
node points for a specific set. To solve this problem an optimized alpha
value is used in 3D Delaunay triangulation in the proposed algorithm.
Mesh simplification entails removal of mesh nodes to reduce the level
of detail. The selection of nodes to be removed is achieved by associat-
ing a cost with each mesh node. The Delaunay topology constraint on
each mesh level not only helps to design meshes with desired geometric
properties, but also enables efficient compression of the mesh data for
multimedia applications.

1 Introduction

Dynamic mesh representation of video objects has recently been proposed for
object-based video coding (by warped motion compensation), storage (e.g. video
database query by motion) and manipulation (e.g. video animation). A 2D trian-
gular mesh is initially designed on the first video object plane of a video object
sequence, and subsequently tracked by motion estimation techniques. Hence,
a 2D dynamic mesh compactly represents the shape and motion of a video
object. We have recently proposed a hierarchical mesh-based representation of
object-based video [1]. Hierarchical mesh representation has attracted attention
recently, because it provides rendering at various level of detail (quality scala-
bility), and allows progressive/scalable transmission of the mesh geometry and
motion. Also, the hierarchical representation leads to improved motion track-

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 45–55, 2005.
Springer-Verlag Berlin Heidelberg 2005©c

46 I. Celasun, R. Melkisetoğlu, and A.M. Tekalp

ing performance [1]. This paper discusses optimal hierarchical construction of
content-based 2D and 3D dynamic meshes.

A hierarchy of fine-to-coarse meshes can be obtained by repeated removal of
some detail information from an initial mesh. A 2D mesh partitions the image
domain into triangular patches, the vertices of which are referred to as node
points. The straight-line segments between node points are referred to as edges.
The degree of a node is the number of incident edges to the node. In the ini-
tial fine level-of-detail mesh design, node points are placed at salient edge and
corner points of the boundary and interior of a video object plane. The number
of nodes in the initial mesh can be found using the number of points detected
by a corner detection algorithm. The initial mesh topology is constructed us-
ing constrained Delaunay triangulation of the node points, where the boundary
edge segments serve as constraints. The Delaunay property of the initial mesh
is preserved during mesh simplification by the constraint that only non-adjacent
nodes can be removed, i.e., removed nodes must form an independent set. Each
removed node leaves a hole in the mesh which is retriangulated using the De-
launay criterion.

Three-dimensional (3-D) polygonal meshes have been popular in computer
graphics to describe the geometry (structure) of world objects. They have been
employed to view objects from different angles and/or to render photorealistic
synthetic images by texture mapping [2]. Three-dimensional meshes are an el-
ementary building block of the Virtual Reality Modeling Language (VRML), a
standard for storing and interacting with graphics objects and virtual worlds
over the World Wide Web.

Hierarchical representation of 3D meshes have attracted attention because
it: 1) provides rendering at various levels of detail (quality scalability); 2) allows
progressive/scalable transmission or storage of the object geometry and motion
information. Scalability means that terminals of different complexity can extract
data of different quality levels from this single bit stream. Hierarchical represen-
tation of 3-D meshes has been addressed in computer graphics for adaptive level-
of-detail (LOD) rendering of 3-D objects. A wavelet-based multiresolution mesh
approximation was proposed in [3, 4, 5]. Meshes of tetrahedra have many appli-
cations, including interpolation, rendering, compression, and numerical methods
such as the finite element method. Most such applications demand more than
just a triangulation of the object or domain being rendered or simulated. To
ensure accurate results, the tetrahedra must be “well-shaped”, having small as-
pect ratios or bounds on their smallest and largest angles [6]. In this paper, we
propose a new hierarchy of 3D Delaunay meshes and we only remove vertices in
the fine to coarse design strategy. We do not reposition vertices nor edges which
increase efficient use of bandwidth when compared to other methods mentioned
so far.

In Section 2 and 3, algorithms for 2D/3D mesh simplification with their
proper design parameters respectively are explained. In Section 4, experimental
results for proposed decimation algorithms and conclusions are given.

Optimal Design of 2D/3D Hierarchical Content-Based Meshes 47

2 Two Dimensional Hierarchical Mesh Representation
and Design

A hierarchy of fine to coarse level meshes M� is defined, with � = 0, 1, . . . , L− 1,
where each coarser level mesh is obtained by removal of some detail information
from the finer level mesh. Thus, a hierarchical decomposition of the mesh data
into L levels is obtained, consisting of a base level and L−1 enhancement levels,
suitable for progressive transmission of a 2D dynamic mesh. The base level mesh
contains a coarse version ML−1 of the original mesh, while each enhancement
level contains detail information such that finer versions ML−2, . . . , M0 of the
mesh can be reconstructed, where M0 is the original mesh. Hierarchical mesh
representation and mesh simplification have been addressed in computer graphics
for adaptive level-of-detail rendering of 3D objects. Hierarchical mesh modeling
of video has been addressed previously in the context of uniform topology only.

2.1 Delaunay Hierarchy

Here, the decomposition of the initial mesh is restricted such that each mesh M�

reconstructed at level � has Delaunay topology. Thus, no topology data has to
be encoded on any level of the decomposition. Only mesh node locations need
to be encoded.

A simplification step starts by removing an independent set of nodes from
the mesh at a certain level. An independent set of nodes is a set of nodes among
which no two nodes are connected to each other by an edge. Edges that are
incident to a removed node are removed as well. Each removed node of the mesh
leaves a hole in the mesh which is to be retriangulated using the Delaunay cri-
terion. It has been noted by de Berg et al. [7] that, after locally retriangulating
the areas around removed independent nodes, the global triangulation remains
Delaunay. The nodes that were removed in this step form the detail information
to be encoded in an enhancement layer. This removal step is iterated a number
of times, thus defining L versions of the mesh from fine to coarse. This strat-
egy leads to a well-defined hierarchy of triangles and Delaunay meshes for all
levels � = 0, . . . , L − 1, in which part of the topology is preserved going from
one hierarchical level to the next. The approach represents the middle ground
between enforcing a strict triangular hierarchy as one extreme, and ignoring
topology preservation completely by picking nodes to be removed freely as the
other extreme. It is naturally desirable to retain important nodes while going
from one level to the next, such that essential mesh features are not removed. In
this paper, we determine the importance of a node adaptively using image-based
and shape-based criteria. The nodes on a 2D mesh boundary, convey essential
object shape information.

2.2 Removal of Mesh Boundary Nodes

A sequential simplification algorithm is used to remove boundary nodes going
from one hierarchy level to the next. The algorithm uses a distance parameter

48 I. Celasun, R. Melkisetoğlu, and A.M. Tekalp

Dmax to control the error in the polygonal boundary shape, which is increased
from level to level. A candidate approximating edge segment, or chord, is drawn
between an initial boundary node point and another node point, the chord node.
Initially, the chord node is the second node on the boundary with respect to the
initial node. For each node between the initial boundary node and the chord
node, the distance d from the candidate node to the chord is computed and
compared to Dmax. If d is smaller than Dmax for all candidate node points,
the next node on the boundary becomes the new chord node and a new chord is
drawn. If d is greater than or equal to Dmax for one or more candidate nodes, the
candidate node with maximum distance d is retained and all nodes between this
node and the initial node become removable nodes. The node that is retained
becomes the initial node in the next step. Note that only an independent subset
of the removable nodes is actually removed, so as to conform to the hierarchy
discussed in the previous subsection. These steps are repeated until all nodes on
the boundary have been processed.

2.3 Removal of Mesh Interior Nodes

The set of interior nodes to be removed while going from one hierarchy level to
the next can be determined using both spatial and temporal image-based criteria.
That is, one desires to retain nodes with locally important motion activity, as
well as nodes that are salient in terms of “edgeness” and “cornerness” measures.
The following measure of the saliency of node n is used:

Cn = |Ix (�pn)|2 + |Iy (�pn)|2 + Γ (�pn) (1)

where �pn(xn, yn) is the location of node n, Ix (�pn) and Iy (�pn) are partial deriva-
tives of the intensity image at �pn, and Γ (�pn) is the response of a corner detector
at �pn, based on a non-linear measure of similarity between the image intensities
in a neighborhood around �pn. Here, the intensity image refers to the initial VOP
of the video object from which the mesh was derived. Using this importance mea-
sure, interior nodes are removed using an iterative greedy algorithm. Initially,
all nodes that were connected directly to a removed boundary node are marked.
Then, during each iteration, the unmarked node with the smallest value of the
importance measure is removed and all nodes connected directly to this node are
marked. Repeat until there are no more unmarked nodes. Note that the marking
of nodes ensures that the nodes that are removed form an independent set. We
allow a node to be removed only if its degree (number of incident edges) is at
most 6. One can still ensure that a certain percentage of nodes will be removed.

3 Three Dimensional Hierarchical Mesh Representation
and Design

3.1 Initial Fine Detail Mesh

The 3D Delaunay triangulation is defined as the triangulation that satisfies the
Delaunay criterion for n-dimensional simplexes (in this case n=3 and the sim-

Optimal Design of 2D/3D Hierarchical Content-Based Meshes 49

plexes are tetrahedra). This criterion states that a circumsphere of each simplex
in a triangulation contains only the n+1 defining points of the simplex. It has
been proven that two dimensional Delaunay triangulation satisfies an “optimal”
triangulation, but in 3D Delaunay triangulation the situation is not so, since a
measurement for optimality in 3D is not agreed on in the literature.

Computation of the “α” Parameter. A graph can be defined as G = (V, E).
Here V is the set of vertices, V={v0, v1, ... , v1, ... , vv−1}, and E is the set of
edges, E={e0, e1, . . . , ei, . . . , eE−1}. The α parameter used in the 3-D De-
launay tetrahedralization tool specifies the radius of the circumsphere of each
tetrahedron. Only tetrahedrons lying within this circumsphere are allowed. If
the α value is zero, the output of the tetrahedralizator is a convex hull. Usually
the output is a tetrahedral mesh, but if α distance value is not to be set as
zero, then output data consists of tetrahedra, triangles, edges, and vertices lying
within the α radius. Optimal α value has to be computed in order to get a good
approximation of the original image. The average tetrahedron edge length (le)
of the convex hull is used in the proposed decimation method to determine this
optimal value. Although the convex hull may contain edges of large length when
connecting end nodes of the volume data, experiments show that the average
edge length gives us a proper α value. In fact, to preserve all tetrahedra present
in the 3-D mesh, maximum circumradius of them has to be used to determine
α value, which in practice is expressed as average value when convex hull is em-
ployed. Again these “ill-conditioned” tetrahedra force us to choose average edge
length instead of circumradius in α value determination.

When used a global α, some regions in the mesh, as pointed in Figure 3 (a),
(c), (e) cannot be filled. The reason is that, an optimal Delaunay triangulation in
3D using all given node points cannot be guaranteed 3D which is different from
2D case [6, 7]. These vertices cannot be located in the spheres by using global
α value in the Delaunay triangulation topology. There may be non connected
regions since α value does not guarantee a connected mesh. The α variable in the
local Delaunay topology, is obtained by vertex density value calculated by scan-
ning the number of neighbours of a vertex in a region. Optimization is realized
consecutively by bounding the alpha variable with a minimum and maximum
value. Region with a density of vertices with constrained Delaunay triangula-
tion, and the boundaries of these regions are kept and after the application of
the same process for other density value regions, these regions boundaries are
connected. So, generally a Delaunay mesh is formed by connected submeshes
which are constrained Delaunay triangulated.

Boundary Extraction Algorithm. The boundary extraction algorithm for
3-D images represented by the Delaunay tetrahedralization, uses the sum of the
solid angles at every vertex to determine whether the vertex is on the boundary
or not. The solid angle at the vertex vi of the tetrahedron T (v0, v1, v2, v3) is
defined to be the surface area formed by projecting each point of the face not
containing vi to the unit sphere centered at vi. For each tetrahedron, the solid

50 I. Celasun, R. Melkisetoğlu, and A.M. Tekalp

angle at each vertex is calculated. A vertex is said to be on the boundary, if the
sum of the solid angles of every tetrahedron the vertex belongs to at this node,
is less than the surface area of a unit sphere, 4π. If the sum of the solid angles
equals 4π, the vertex has to be in the interior of the image. It is obvious from
the definition of the solid angle of a tetrahedron, that there is no possibility
for the sum of the solid angles to be greater than the surface area of the unit
sphere, provided that the tetrahedrons do not intersect. The solid angle (Ψ) of
a tetrahedron is as:

(Θe1e2 : dihedral angle at edge e1e2) ΨA = (ΘAB) + (ΘAC) + (ΘAD) − π (2)

where the dihedral angle (Θ) at the edge eAB is the angle between the intersection
of the two faces containing the edge eAB and a plane perpendicular to this edge:

ΘAB = π − | arccos(faceABC • faceABD)| (3)

A sequential simplification algorithm is again used as in 2D case for 3D too
to remove boundary vertices going from one hierarchy level to the next.

Mesh Interior Simplification. Importance function assigns an importance
value for each vertex in the mesh. If the vertex is an important vertex that
should not be removed, his importance value is also large.The importance (IP1)
value for an interior node is defined as the ratio of the sum of its neighbors’
tetrahedral volume to its tetrahedron volume. This IP1 stress on the connectiv-
ity of the mesh and try to retain detailed regions’ vertices of the volume data.
Degree(n) is criterion of the connectivity of relevant vertex vn. It represents
how many edges are connected to the vertex. It is obvious that more smaller
the volume(n) and more larger the sum of volume(i) is more higher the impor-
tance value of relevant vertex because small volume represents a more detailed
region and vertex in this region is more important. The interior vertex remove
algorithm is a simple Greedy-type algorithm that removes the vertex having the
smallest importance value among the unprocessed ones, and keeps its neighbor
vertices.

The importance value for an interior vertex, is defined as the multiplication
of his degree with the ratio of the total volume of the tetrahedrons formed by its
neighbors to its own volume. If the volume of a tetrahedron related to a vertex,
is smaller then the volumes of the tetrahedrons related to its neighbors, this
means that this vertex contains a detail

IP (n) = Degree(n) ∗

neighbors−1∑
i=1

volume(i)

volume(n)
(4)

information and removing will be deletion of this detail information.

Optimal Design of 2D/3D Hierarchical Content-Based Meshes 51

4 Experimental Results and Conclusions

4.1 Results for Design of 2D Meshes

Initial fine level-of-detail content-based meshes were designed on initial Bream
and Akiyo video object planes, as illustrated in Figure 1 (a) and Figure 2 (a)
respectively. These fine level-of-detail meshes contain 165 nodes and 210 nodes,

(a) (b) (c)

(d) (e)

Fig. 1. (a) Illustrates six node layers of the original Bream mesh used in mesh simplifi-
cation, by successive empty and filled squares. In (b), (c), (d) and (e), the hierarchical
mesh for four consecutive levels of Bream is shown overlaid onto the original video
object plane, where empty square symbols indicate the boundary nodes that will be
removed at that hierarchy level and filled squares indicate the interior nodes to be
removed at that level

Table 1. Number of removed boundary nodes and number of removed interior nodes
at each level of the mesh hierarchy for the initial Bream video object plane

Hier. level Dmax # rem. boundary # rem. interior

1 0.8997 8 18
2 1.6246 10 14
3 1.8342 6 11
4 2.0613 0 7

respectively. Successively coarser level-of-detail meshes, obtained using the sim-
plification methods are illustrated in Figure 1 (b), (c), (d) and (e) for Bream,

52 I. Celasun, R. Melkisetoğlu, and A.M. Tekalp

Table 2. Number of removed boundary nodes and number of removed interior nodes
at each level of the mesh hierarchy for the initial Akiyo video object plane

Hier. Level Dmax # rem. boundary # rem. interior

1 0.4662 4 32
2 1.3083 6 23
3 3.3609 6 19

(a) (b) (c) (d)

Fig. 2. (a) Illustrates six node layers of the original Akiyo mesh used in mesh simplifi-
cation, by successive empty and filled squares. In (b), (c) and (d), the hierarchical mesh
for three consecutive levels of Akiyo is shown overlaid onto the original video object
plane, where empty square symbols indicate the boundary nodes that will be removed
at that hierarchy level and filled squares indicate the interior nodes to be removed at
that level

and in Figure 2 (b), (c) and (d) for Akiyo. The number of nodes removed from
the boundary and from the interior of each 2D mesh at all hierarchy levels are
summarized in Tables 1 and 2, for the Bream and Akiyo sequences, respectively.

4.2 Results for Design of 3D Meshes

Experimental results related to boundary and interior vertex simplification are
given for “Cat” and “Engine” data. The proposed algorithm works in general for
volume data but it can also provide successful results for surface data in terms
of minimized number of vertices for a good mesh quality. Boundary node simpli-
fication is accomplished for Dmax = 2.0 for “Cat”. “Cat” data has a boundary
consisted of concave and convex regions so its boundary has to be processed
carefully for its global shape information. That is why a low Dmax value is cho-
sen for “Cat”. The stopping criterion is such that no more removed vertices on
its boundary is applied. Global α value and IP are used for “Engine” and “Cat”
in Figures 3-5. As seen from Figure 3, there are some gaps (nonconnected re-
gions) at the output the rendered object. To get rid of this, local α values are
used as in Figure 3-5 with IP calculation. Although number of vertices are very
small in Figure 4 and 5, good results in terms of visual information and node
simplification are obtained as given in Table 3 and 4 where two test results are
also added.

Optimal Design of 2D/3D Hierarchical Content-Based Meshes 53

(a) (b) (c) (d)

(e) (f)

Fig. 3. “Results for 3D Delaunay meshes using global α are given in (a), (c), (e) and
for 3D Delaunay meshes using local α s are given in (b), (d), (f) respectively for “Cat”,
“Engine”, “Mannequin” data

Mesh quality criteria can be provided by a “Volume Test” and an “Angle
Test”: First, ratio of inner radius (r) to outer (R) one for a tetrahedron cannot
pass 1/3. In a sliver r → 0 and R → ∞, thus 3r

R
∼= 0. Using this ratio as a

mesh quality measure, we can say that this mesh performance criterion is be-
tween 0 and 1. By calculating this ratio for each tetrahedron and taking the
average value, we can determine the overall quality of the mesh at hand. This
is called a “Volume Test”. Second, absolute value of the deviation of each angle
of each triangle in the 3D mesh from 60 is calculated. Average of the devia-
tion angles of all triangles in the 3D mesh is taken and “Angle Test” is thus
calculated.

For both 2D and 3D hierarchical meshed only vertices have to be known,
triangles are determined by Delaunay triangulation. The main difficulty with
Delaunay triangulation in 3D is that its optimality is not proven. An optimal
choice of alpha value controls this problem. In the proposed method, one only
needs the vertices so a high transmission rate is possible for both 2D and 3D
applications. Removal of maximum number of independent vertices will then
provide high compression ratios by preserving mesh and thus rendered object
quality.

54 I. Celasun, R. Melkisetoğlu, and A.M. Tekalp

(a) (b) (c) (d)

Fig. 4. (a) Original “Engine”graphics model with 426 vertices -3D Delaunay Mesh �0
(b) 3D Delaunay Mesh �1 hierarchy level 1 with 366 vertices (c) 3D Delaunay Mesh
�2 hierarchy level 2, with 291 vertices (d) 3D Delaunay Mesh �3 hierarchy level 3 with
235 vertices

(a) (b)

Fig. 5. (a) Original graphics model ”Cat” with 328 vertices,-3D Delaunay Mesh �0 (b)
3D Delaunay Mesh �3 hierarchy level 3 with 238 vertices

Table 3. Performance of the hierarchical design algorithm for “Engine” data as given
in Figure 4 with IP calculation and local α values (V: vertices, B.V.: Boundary vertices)

V B.V. Volume Test Angle Test
Original 426 189 0.419 24.04
Hierarchy Level 1 366 161 0.419 23.85
Hierarchy Level 3 291 153 0.437 22.92
Hierarchy Level 5 235 144 0.462 22.09

Table 4. Performance of the hierarchical design algorithm for “Cat” data as given in
Figure 5 with IP calculation and local α values (V: vertices, B.V.: Boundary vertices)

V B.V. Volume Test Angle Test
Original 328 149 0.284 28.02
Hierarchy Level 1 268 120 0.284 27.91
Hierarchy Level 2 238 120 0.294 27.45

Optimal Design of 2D/3D Hierarchical Content-Based Meshes 55

Table 5. Local α values for “Engine” and “Cat” data for different hierarchy levels
(E:Engine, C:Cat, �i:level i)

E �0 E �1 E �3 E �5 C �0 C �1
0.78 0.81 0.87 1.08 0.11 0.12
1.34 1.37 1.48 0.94 0.18 0.13
1.33 1.36 0.98 1.60 0.16 0.19
1.23 1.25 1.11 1.44 0.12 0.19
0.95 0.96 1.24 1.25 0.15 0.17
1.03 0.88 1.39 0.14 0.12
1.13 1.15 0.18 0.16
0.86 1.05 0.15 0.17

0.17 0.14
0.12 0.15
0.13

References

1. van Beek, P., Tekalp, A. M., Zhuang, N., Celasun, I., Xia, M.: Hierarchical 2-D mesh
representation, tracking, and compression for object-based video. IEEE Trans. on
CSVT 9, (1999)

2. Hearn D., and Baker M. P.: Computer Graphics, 2nd ed. Englewood Cliffs, NJ:
Prentice Hall, (1997)

3. P. S., Heckbert, M., Garland: Multiresolution Modeling for Fast Rendering, in Proc.
Graphics Interface ’94, Banff, Alta. (May 1994)

4. Hoppe H.: Progressive Meshes, in Computer Graphics-Proc. SIGGRAPH ’96,
(1996), 99–108

5. Eck M., DeRose T., Duchamp T., Stuetzle W.: Multiresolution Analysis of Arbitrary
Meshes, in Computer Graphics-Proc. SIGGRAPH ’95, (1995), 173–182

6. Shewchuck, J. R.: Tetrahedral mesh generation by Delaunay refinement, in Proceed-
ings of the fourteenth annual symposium on computational geometry, Association
for Computing Machinery, (June 1998), 86–95

7. de Berg, M., van Kreveld, M. , Overmars, M., Schwarzkopf, O.: Computational
Geometry-Algorithms and Applications, Springer, 1997

Receptive Fields for Generalized Map Pyramids:
The Notion of Generalized Orbit

Carine Grasset-Simon, Guillaume Damiand, and Pascal Lienhardt

SIC, FRE-CNRS 2731 - Université de Poitiers,
bât. SP2MI, Bvd M. et P. Curie,

BP 30179, 86962 Futuroscope Chasseneuil Cedex - France
{simon, damiand, lienhardt}@sic.univ-poitiers.fr

Abstract. A pyramid of n-dimensional generalized maps is a hierarchi-
cal data structure. It can be used, for instance, in order to represent
an irregular pyramid of n-dimensional images. A pyramid of generalized
maps can be built by successively removing and/or contracting cells of
any dimension. In this paper, we define generalized orbits, which extend
the classical notion of receptive fields. Generalized orbits allow to estab-
lish the correspondence between a cell of a pyramid level and the set of
cells of previous levels, the removal or contraction of which have led to
the creation of this cell. In order to define generalized orbits, we extend,
for generalized map pyramids, the notion of connecting walk defined by
Brun and Kropatsch.

Keywords. Irregular pyramids, generalized maps, generalized map pyra-
mids, connecting walks, generalized orbits.

1 Introduction

For image analysis, it can be useful for some applications to segment an image
at different levels. According to the application, some informations appear more
clearly at some levels. An image pyramid corresponds to several segmentation
levels of an image; levels 0 corresponds to the original image, the following levels
correspond to the successive segmentations of this image. Many works deal with
2D image regular pyramids (cf. e.g. [1]) or 2D image irregular pyramids (cf. e.g.
[2, 3, 4]).

Most image processing algorithms need to extract informations from im-
ages, for instance the adjacency between regions of images (e.g. an algorithm
of segmentation by region aggregation). Order is another interesting notion. For
example, it can be useful to retrieve the order of the edges which compose the
boundary of a 2D region, or in 3D, to know the order of volumes and faces
around an edge or a vertex.

Many definitions of irregular pyramids are based upon graphs [3, 5]. More
recently, Brun and Kropatsch [6, 7, 8, 9] have studied 2D combinatorial map
pyramids, since combinatorial maps allow to represent the whole topological in-

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 56–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Receptive Fields for Generalized Map Pyramids 57

formation of subdivisions of orientable surfaces without boundary (for instance
the order information is generally not represented by graphs).

3D and 4D images (time being the 4th dimension) are now usual images. So,
we want to extend the previous works for any dimension, by defining pyramids
of generalized maps [10]. The n-dimensional generalized maps (or n-G-maps)
represent the topology of n-dimensional quasi-manifolds [11], orientable or not,
with or without boundary. We have chosen generalized maps since their definition
is homogeneous for all dimensions. So, we can easily define generic operations
and algorithms.

A pyramid of n-G-maps can be constructed in the following way. Given an
n-G-map which represents for instance an image, each level of the pyramid is
deduced from the previous level by applying simultaneously removals and/or
contractions of cells of any dimension1.

It is essential for many applications, to establish the correspondence between
a cell at a given level, and the set of cells of previous levels the removal or the
contraction of which has led to the creation of this cell. In 2D for instance, it
can be useful to associate a face with the corresponding region of a lower level.
In particular, it allows to retrieve any information contained in a lower pyramid
level. The notion of receptive field has been introduced in order to establish this
correspondence between regions of different levels. First, this notion has been
defined in the context of graph hierarchy [3], in the following way: the receptive
field of a cell of level n is the set of all pixels of level 0 which “compose” this
cell. More recently, Brun and Kropatsch define the notion of receptive field of a
dart for 2D combinatorial map pyramid [12]. This notion is based on the notion
of connecting walk between a surviving dart and its successor at a given level,
which is the set of darts which separate these two darts at the previous level.
The notion of reduction window generalizes that notion of connecting walks for
any levels.

The main result presented in this paper is the definition of generalized orbits
of n-G-map pyramids which makes it possible to associate any cell of any dimen-
sion of a given level with the set of corresponding cells of any lower level. This
definition is based upon a generalization of the connecting walk notion, which
is itself based upon the operation of “simultaneous removals and contractions of
cells” presented in [13].

The notion of orbit is a classical one for combinatorial and generalized maps.
It allows to define cells as set of darts, darts being the unique type of elements
defining maps (c.f. section 2). We generalize the notion of receptive field for
any orbit (i.e. any cell) and any levels by defining generalized orbit. With this
notion, we retrieve for n-cells the union of n-cells at a lower level which have
been “merged” in a unique n-cell in a upper level.

This paper is organized in the following way. We give in section 2 a brief
recall about pyramids of n-dimensional generalized maps. The connecting walk

1 Note that 2D combinatorial map pyramids as defined by Brun and Kropatsch are
built in a particular way: each odd (resp. even) level is deduced from the previous
one by contracting (resp. removing) edges.

58 C. Grasset-Simon, G. Damiand, and P. Lienhardt

notion is defined in section 3, and generalized orbits are defined in section 4. At
last, we conclude and give some perspectives in section 5.

2 Recall: Pyramids of n-Dimensional Generalized Maps

An n-dimensional generalized map is a set of abstract elements, called darts,
together with applications defined on these darts (c.f. figure 1):

Definition 1 (n-G-map). Let n ≥ 0. An n-dimensional generalized map G
(or n-G-map) is defined by G = (D,α0, . . . , αn) where:

1. D is a finite set of darts;
2. ∀i, 0 ≤ i ≤ n, αi is an involution2 on D;
3. ∀i, j, 0 ≤ i < i + 2 ≤ j ≤ n, αiαj is an involution.

The n-G-maps represent the topology of subdivided objects, more precisely
the topology of quasi-manifolds (see [11]). Cells are implicitly represented as
subset of darts:

Definition 2 (i-cell). Let G be an n-G-map, d be a dart and i ∈ N = {0, . . . , n}.
The i-cell incident to d is the orbit3

<>N−{i} (d) =< α0, . . . , αi−1, αi+1, . . . , αn > (d).

Figure 1 illustrates the notions of generalized map and i-cell. Intuitively, an
i-cell is the set of all darts which can be reached starting from d, by using any
combination of all involutions except αi. The set of i-cells is a partition of the
set of darts D, for each i between 0 and n. Two cells are disjoint when their
intersection is empty, i.e. when no dart is shared by the cells. More precisions
about n-G-maps are provided in [11] and [14].

In order to define n-G-map pyramids, Damiand and Lienhardt have defined
the operation of “simultaneous removals and contractions of cells of any dimen-
sion” [13] which allows to contract and remove a set of cells of any dimension in
a simultaneous way. The formal definition of this operation is:

Definition 3 (Simultaneous Removal and Contraction of Cells of Any
Dimension).
Let G = (D,α0, . . . , αn) be an n-G-map, R0, . . . , Rn−1 be sets of 0-cells, . . . ,
(n − 1)-cells to be removed and C1, . . . , Cn be sets of 1-cells, . . . , n-cells to be
contracted. Let R = ∪n−1

i=0 Ri and C = ∪n
i=1Ci. Two preconditions have to be

satisfied: cells are disjoint (i.e. ∀c, c′ ∈ C ∪ R, c ∩ c′ = ∅), and “the degree of
each cell is equal to 2”, i.e.:

2 An involution f on a finite set S is a one to one mapping from S onto S such that
f = f−1.

3 Let {Π0, . . . , Πn} be a set of permutations on D. The orbit of an element d relatively
to this set of permutations is < Π0, . . . , Πn > (d) = {Φ(d), Φ ∈< Π0, . . . , Πn >},
where < Π0, . . . , Πn > denotes the group of permutations generated by Π0, . . . , Πn.

Receptive Fields for Generalized Map Pyramids 59

6

2

7

12 1310

15
16

14119
4

8
1

3 5

(a) (b)

Fig. 1. (a) A subdivision of a surface. (b) The corresponding 2-G-map. Darts are
represented by (numbered) black segments. Two darts in relation by α0 share a little
vertical segment (ex. darts 1 and 2). Two darts in relation by α1 share a same point
(ex. darts 2 and 3). Two distinct darts in relation by α2 are parallel and close to
each other (ex. darts 9 and 11); otherwise, the dart is its own image by α2 (ex. dart
2). The vertex incident to dart 14 is < α1, α2 > (14) = {13, 14, 15, 16}, the edge
incident to dart 9 is < α0, α2 > (9) = {9, 10, 11, 12}, and the face incident to dart 4 is
< α0, α1 > (4) = {1, 2, 3, 4, 5, 6, 7, 8}

- ∀i, 0 ≤ i ≤ n − 2, ∀d ∈ Ri, dαi+1αi+2 = dαi+2αi+1
- ∀i, 2 ≤ i ≤ n, ∀d ∈ Ci, dαi−1αi−2 = dαi−2αi−1

Let SDi = (Ri ∪ Ci)αi − (Ri ∪ Ci) ∀i, 0 ≤ i ≤ n (it is the set of surviving
darts “neighbour” of removed and contracted cells). The resulting n-G-map is
G′ = (D′, α′

0, . . . , α
′
n) defined by:

– D′ = D − (C ∪ R);
– ∀i, 0 ≤ i ≤ n, ∀d ∈ D′ − SDi, dα′

i = dαi;
– ∀i, 0 ≤ i ≤ n, ∀d ∈ SDi, dα′

i = d′ = d(αiαk1) . . . (αiαkp
)αi, where p

is the smallest integer such that d′ ∈ SDi, and ∀j, 1 ≤ j < p, if dj =
d(αiαk1) . . . (αiαkj−1)αi ∈ Ri then kj = i + 1 else (dj ∈ Ci) kj = i − 1.

Figure 2 illustrate this operation.
A pyramid of n-dimensional generalized maps (or n-G-map pyramid) is a

hierarchical data structure [10]. Each level is an n-G-map, deduced from the
previous level by applying the general operation of removal and/or contrac-
tion of cells. The choice of the removed or contracted cells depends on the
application (we assume here that this choice is the result of an external
process). An n-G-map pyramid can be defined in the following way (see
figure 3-a):

Definition 4 (n-G-map Pyramid). Let n, m ≥ 0. An m + 1 level pyramid
P of n-dimensional generalized maps is defined by P = {Gk}0≤k≤m where:

1. for each k, 0 ≤ k ≤ m, Gk = (Dk, αk
0 , . . . , α

k
n) is an n-G-map;

2. for each level k, 0 < k ≤ m,

60 C. Grasset-Simon, G. Damiand, and P. Lienhardt

a b

Fig. 2. An example of simultaneous removal and contraction of cells of different di-
mensions. (a) A 2-G-map where the darts 0-removed, 1-removed and 1-contracted are
respectively marked by empty squares, circles and gray disks. The surviving “neigh-
bour” darts are marked by crosses. (b) The 2-G-map obtained by application of the
operation

– Rk−1 =
⋃n−1

i=0 Rk−1
i (resp. Ck−1 =

⋃n
i=1 C

k−1
i) is a set of cells of Gk−1.

These cells are disjoint, and their degrees equals to 2.
– Gk is deduced from Gk−1 by simultaneously removing Rk−1 and con-

tracting Ck−1.

In the following, P denotes an n-G-map pyramid composed of m + 1 levels
numbered from 0 to m. Level k refers to n-G-map Gk. A dart keeps its name
when it is not suppressed (for instance dart 1 of level 0 and 1 in figure 3-b). So,
Dk+1 ⊆ Dk for any k, 0 ≤ k < m: each dart appears for the first time in the
first pyramid level; if a dart belongs to the kth pyramid level, it does not belong
to a cell which is removed or contracted in a precedent level. Levd denotes the
last level in which dart d exists. At last, note that for a given dimension i and a
given level k, each dart d in Dk is either a dart which belongs to a removed i-cell
(d ∈ Rk

i) or to a contracted i-cell (d ∈ Ck
i), or a dart which is a “neighbour” of a

contracted or removed i-cell (d ∈ SDk
i), or an other dart (d �∈ (Rk

i ∪Ck
i ∪SDk

i)).

3 Connecting Walks

The notion of connecting walk has been defined by Brun and Kropatsch for
combinatorial map pyramids. More precisely, a connecting walk is the set of
darts at a given level which separates a surviving dart and its successor in the
next level. We extend this notion for n-G-map pyramids, for any two levels,
and any dart of the pyramid. In the standard case (for surviving darts), the
definition of connecting walk corresponds to that of Brun and Kropatsch. For
all other darts of the pyramid (non surviving darts), this definition is extended
in order to be able to define generalized orbits. A connecting walk is a sequence
of darts in a lower level that separates two darts of a upper level. Intuitively, a
connecting walk at a given level is obtained by concatenating connecting walks
of the previous level concerned by removals or contractions. Ch(i,a,b)(d) denotes
the connecting walk between levels a and b (a ≤ b), for any dart d ∈ Da and
dimension i.

First, assume d ∈ Db (a surviving dart). Ch(i,a,b)(d) is the sequence of darts
at level a separating dart d and its neighbour dαb

i .

Receptive Fields for Generalized Map Pyramids 61

When b = a + 1, we get a definition near to that of Brun and Kropatsch.
In fact, when b = a + 1, Ch(i,a,a+1)(d) is then the sequence of darts removed
and contracted between levels a and a+ 1 linking d and dαa+1

i . These darts are
traversed when we define dαa+1

i (cf. definition 3 of simultaneous removal and
contraction).

When b > a+1, Ch(i,a,b)(d) is the sequence of darts removed and contracted
between levels a and b linking d and dαb

i . Using the definition of removals and
contractions of cells, we can iterate the previous process for each level. So, we
can express Ch(i,a,b)(d) as a concatenation of walks examined between levels a
and b − 1. We obtain a recursive definition of Ch(i,a,b)(d).

In the particular case where there is no dart between d and its neighbour
for αb

i at level b − 1, that is to say where d is not the neighbour for αb−1
i of a

contracted or removed dart, then Ch(i,a,b)(d) is equal to Ch(i,a,b−1)(d).
We can observe that Ch(i,a,a)(d) is composed of only one dart: dαa

i , since no
darts at level a separates d and dαa

i .
Second, assume d �∈ Db (a non surviving dart).
We have to extend the notion of connecting walk in order to define the notion

of generalized orbit. When d ∈ Db−1, the removal or contraction of the cell
containing d is directly concerned in the construction of level b, and has direct
consequences in the definition of new orbits of this level. This is not the case when
d �∈ Db−1. For these reasons, if d �∈ Db−1, Ch(i,a,b)(d) is the empty sequence, and
if d ∈ Db−1, Ch(i,a,b)(d) corresponds to the sequence of darts traversed from d
and applying the same rules than for the definition of removal and contraction.
There are here two conditions to stop: when the last dart d′ belong to Db, or
when the last dart is d (In the first case, Ch(i,a,b)(d) corresponds to a subsequence
or to the inverse of a subsequence of Ch(i,a,b)(d′). In the second case, Ch(i,a,b)(d)
is a cycle).

See figure 3 for examples of these different cases of connecting walks. The
notion of connecting walk is formally defined in the following way:

Definition 5 (Connecting Walk). Let i ∈ N , a and b be such that 0 ≤ a ≤
b ≤ m.
For each dart d ∈ Da, Ch(i,a,b)(d) is defined by:
if b = a: Ch(i,a,b)(d) = (dαa

i),
else if b > levd + 1: Ch(i,a,b)(d) = (),
else if d �∈ (SDb−1

i ∪ Rb−1
i ∪ Cb−1

i): Ch(i,a,b)(d) = Ch(i,a,b−1)(d),

else: Ch(i,a,b)(d) = C =
(
Ch(k1,a,b−1)(d1), . . . , Ch(kp,a,b−1)(dp)

)
,

where: d1 = d,
∀u, 1 ≤ u < p, du+1 is the last dart of Ch(ku,a,b−1)(du),

∀u, 1 ≤ u ≤ p, ku =

⎧⎨⎩
i if u is odd
i + 1 if u is even and du ∈ Rb−1

i ,

i − 1 if u is even and du ∈ Cb−1
i ,

and p is the smallest integer such that the last dart of C is equal to
d, or is a surviving dart.

62 C. Grasset-Simon, G. Damiand, and P. Lienhardt

1 2 5 6 9 10

level 1

5 10

43

2 6 91

7 8

12

13
14 15

1811
17

16

level 0

a b

Fig. 3. (a) Example of 2-G-map pyramid composed of three levels. The darts 0-removed
(resp. 1-removed) are marked by empty squares (resp. circles). (b) Two levels of the
pyramid. The darts of connecting walk Ch(0,1,2)(1) are drawn thick in level 1. These
darts are between darts 1 and 10, where 10 = 1α2

0: Ch(0,1,2)(1) = (2, 5, 6, 9, 10) =
(1α1

0, 1α1
0α

1
1, 1α1

0α
1
1α

1
0, 1α1

0α
1
1α

1
0α

1
1, 1α1

0α
1
1α

1
0α

1
1α

1
0). Ech◦

(0,1,2)(1) = {2, 5, 6, 9}, and
Ech(0,1,2)(1) = {1, 2, 5, 6, 9, 10}. The darts of connecting walk Ch(0,0,2)(1) are drawn
dotted in level 0, and Ch(0,0,2)(1) = (2, 3, 4, 5, 6, 7, 8, 9, 10). Ch(0,0,2)(1) is the con-
catenation of Ch(0,0,1)(1), Ch(1,0,1)(2), Ch(0,0,1)(5), Ch(1,0,1)(6) and Ch(0,0,1)(9). Note
that Ch(0,0,1)(5) = Ch(0,0,0)(5) = (6). Darts 5 and 11 are non surviving darts at level
2: Ch(0,0,2)(5) = (6, 7, 8, 9, 10) is a subsequence of Ch(0,0,2)(1), and Ch(1,0,1)(11) =
(12, 13, 14, 15, 16, 17, 18, 11) is a cycle

From this definition, we deduce in a straightforward way an algorithm which
computes a connecting walk with a cost Θ(n), n being the number of darts of
the connecting walk.

Given a connecting walk Ch(i,a,b)(d), we deduce two sets of darts: open con-
necting set Ech◦

(i,a,b)(d) and closed connecting set Ech(i,a,b)(d) (c.f. figure 3-b).
Intuitively, the first set corresponds to the interior of the connecting walk and
the second set corresponds to the whole connecting walk, extremities included.
The notion of generalized orbits is based upon these sets.

Definition 6 (Open and Closed Connecting Sets). Let i ∈ N , a and b be
such that 0 ≤ a ≤ b ≤ m.
For each dart d ∈ Da:

– Ech◦
(i,a,b)(d) is the set of darts of the connecting walk Ch(i,a,b)(d), the last

dart excepted;

– Ech(i,a,b)(d) =

⎧⎨⎩
∅ if Ch(i,a,b)(d) = ()
Ech◦

(i,a,b)(d) ∪ {d, d′} otherwise,
where d′ is the last dart of Ch(i,a,b)(d)

Receptive Fields for Generalized Map Pyramids 63

4 Generalized Orbits

A possible use of n-G-map pyramid is the representation of an image segmented
at several levels. For instance, an n-G-map pyramid can be used for representing
an nD image in gray level which is segmented using a simple gray level distance
as homogeneous criterion. Level 0 of the pyramid represents the initial image.
Each xel is represented by an n-cell associated with a gray level. At the following
level, neighbour regions which satisfy the homogeneity criterion are merged into
a unique region. Merging is achieved by removing (n − 1)-cells which separate
them (note that other operations are possible in order to simplify the boundary
between two adjacent regions).

We can compute the gray level of an n-cell from the gray levels of all the
n-cells at level 0 which correspond to this cell. For that we need to compute the
set of n-cells at level 0 which correspond to a given n-cell.

More generally, let a and b be any two levels of an n-G-map pyramid P such
that 0 ≤ a ≤ b ≤ m. Let K ⊆ {0, . . . , n} and let O =<>(K)b (d) be an orbit of
Gb, the n-G-map of the level b of P. The set of darts corresponding to O at level
a is called generalized orbit. Informally, a generalized orbit is the set of orbits at
level a which are “merged” into the orbit at level b.

A generalized orbit can be computed in a sequential way (see figure 4). Let
GO be the generalized orbit associated to O. GO is initialized by GO0 = {d}.
Then we repeat the two following phases: first we add the darts of the connecting
walks of the darts which belong to GO (i.e. we define GO2p+1 as the union
of GO2p and the set of all darts of closed connecting set Ech(i,a,b)(d′) for all
dimension i ∈ K and all darts d′ of GO2p); second, we add all darts of the
orbits <>K of darts belonging to GO (i.e. we define GO2p+2 as the union of
all orbits <>(K)a (d′) for all darts d′ of GO2p+1). Since an n-G-map contains a
finite number of darts, we can show that q ≥ 0 exists, such that no dart is added
to GOq(K,a,b)(d) by repeating the process. Generalized orbit GO is defined as
GOq(K,a,b)(d).

Definition 7 (The Series
(
GOp(K,a,b)(d)

)
0≤p≤q

). Let K ⊆ N , let a and b

be such that 0 ≤ a ≤ b ≤ m, and let d ∈ Db.
We define the series

(
GOp(K,a,b)(d)

)
0≤p≤q

in the following way:

– GO0(K,a,b)(d) = {d};
– ∀n > 0:

GO2p−1(K,a,b)(d) =
⋃

i∈K

⋃
d′∈GO2p−2(K,a,b)(d) Ech(i,a,min{b,levd′+1})(d′);

GO2p(K,a,b)(d) =<>(K)a (GO2p−1(K,a,b)(d)).

Note that the even elements of this series are unions of orbits <>K (for
instance, we can see in figure 5 that a generalized face is a set of faces). As
we have said before, a property of this series is that it is convergent in a finite
number of iterations. Indeed, it is increasing, bounded by Da and so stationary.
We can thus define a generalized orbit as the limit of such a series.

64 C. Grasset-Simon, G. Damiand, and P. Lienhardt

2

3

8

6
4

17 11
109

5

2

3

1

2

1

3

a b c

2

1

3

2

3

1

2

1

3

d e f

Fig. 4. Computing the generalized orbit <>K=<>{0,1} (the face orbit) for darts 1, 2
and 3 in the pyramid of the figure 5. (a) GO1(K,0,5) for darts 1, 2 and 3, are represented
in different gray levels. (b) to (f) GOj(K,0,5), for darts 1, 2 and 3, from j = 2 to j = 6,
are represented in different gray levels. Note that GOj(K,0,5) = GO6(K,0,5) for j > 6. For
example, when we compute GO1(K,0,5)(1), we add the darts of Ch(0,0,5)(1) = (7, 6, 4)
and Ch(1,0,5)(1) = (11, 10, 9, 8, 5)

Definition 8 (Generalized Orbit). Let K ⊆ N , let a and b be such that
0 ≤ a ≤ b ≤ m, and let d ∈ Db. The generalized orbit GO(K,a,b)(d) is defined as
the limit of the series

(
GOp(K,a,b)(d)

)
0≤p≤q

.

From definitions 7 and 8, we can deduce directly a first algorithm which com-
putes a generalized orbit with a cost Θ(kn2), where n is the number of darts of
this generalized orbit, and k = card(K).

The problem of this algorithm is to consider all darts at each step, whereas
it is not useful. In order to optimize this algorithm, we can remark that:

1. it is necessary to consider each dart of the orbit for all involutions of this
orbit. So the lower bound is Θ(kn).

2. when we have added the darts of Ch(i,a,b)(d), it is not useful to consider
the connecting walk for αi, of a dart of the interior of Ch(i,a,b)(d) since it
is included in Ch(i,a,b)(d). Moreover a dart will not be considered another
time for αi since the intersection of two different connecting walks is empty.

So, we can propose an optimized algorithm that computes a generalized orbit
with a cost Θ(kn).

Receptive Fields for Generalized Map Pyramids 65

2

3

1

4
67

9

8 5

10
11

2

3

6
4

17 11
109

8 5

2

1
3

76 11

5

4 9 10

8

a b c

2

3
1

4
67

9

8 5

11
10

2

3
6

4 9

7 1

8 5

11
10

2

1

3

4
5

d e f

Fig. 5. A pyramid. a (resp. b, c, d, e, et f) represents level 0 (resp. 1, 2, 3, 4 et 5).
Darts 0-removed (resp. 1-removed, 1-contracted and 2-contracted) are marked with
empty squares (resp. circles, gray disks and gray squares). The faces of level 5 and the
corresponding generalized faces in lower levels are represented in different gray level

Among the properties of generalized orbits we have:

– ∀d ∈ Da, GO(K,a,a)(d) =<>(K)a (d). Generalized orbits are an extension of
orbits and we retrieve them when we consider generalized orbits at only one
level;

– GO(K,a,b)(d) is a union of orbits <>K at level a (by definition).

n-cells satisfy some additional properties. We can easily show that the n-cells of
a level are necessarily the result of the “merging” of n-cells of the previous level
by applying (n−1)-removals. All the other operations only modify the boundary
of existing n-cells.

So the generalized orbit associated to an n-cell is the union of all n-cells
of level a which have been “merged” to construct it. We can note that even
when (n − 1)-removals have led to a disconnection (see figure 6), we retrieve
for the generalized orbit associated to an n-cell, the set of n-cells at level a
which compose it. With this property, we can deduce that two generalized orbits
associated with n-cells and to the same levels are either equal or disjoint.
These last properties are not necessarily true for other i-cells (i �= n). But, in
general, the interesting cells that contain information are n-cells and not the
others. In order to get such properties for the other cells, it could be necessary
to define other sets of darts and perhaps other generalized orbits.

66 C. Grasset-Simon, G. Damiand, and P. Lienhardt

2

1 1

2

level 0 level 1

Fig. 6. A 2-G-map pyramid composed of two levels. 1-removed darts are marked by
circles. The general orbits associated with faces for darts 1 and 2 are represented in two
gray levels. Note in the second level that the removal of edges has led to a disconnection

5 Conclusion and Perspectives

We have defined the notion of generalized orbit which extends that of receptive
field. This notion, defined for graph pyramids and combinatorial maps pyra-
mids, establishes a correspondence between a region at a given level and the
corresponding set of regions at a lower level. The notion of generalized orbit is
defined for n-G-map pyramids, which can be used in order to represent pyra-
mids of n-dimensional images. Moreover, this notion is defined for any cells of
any dimension, and between any two levels. The definition of this notion is based
upon a generalization of the connecting walk notion, initially defined by Brun
and Kropatsch.

Some properties of generalized orbits have been established. Among them,
two concern only n-cells. In order to define similar properties for other cells, we
are going to define other connecting walks and generalized orbits, and compare
them for different cells of different dimensions.

Moreover we are conceiving operations for handling n-G-map pyramids. More
precisely, we want to be able to modify a level of a pyramid, and to automatically
compute the modifications of the upper and lower levels. Last, given a generalized
orbit and an operation which modifies the pyramid, we want to optimize the
computation of the modified generalized orbit, i.e. to directly deduce it without
re-computing it from scratch.

Acknowledgements

The authors wish to thank Luc Brun and Walter Kropatsch for their encourage-
ments and help.

References

1. Burt, P., Hong, T., Rosenfeld, A.: Segmentation and estimation of image region
properties through cooperative hierarchical computation. IEEE Transactions on
Systems, Man and Cybernetics 11 (1981) 802–809.

Receptive Fields for Generalized Map Pyramids 67

2. Meer, P.: Stochastic image pyramids. Computer Vision, Graphics and Image
Processing 45 (1989) 269–294.

3. Montanvert, A., Meer, P., Rosenfeld, A.: Hierarchical image analysis using irregular
tessellations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13
(1991) 307–316.

4. Jolion, J., Montanvert, A.: The adaptive pyramid: A framework for 2d image
analysis. Computer Vision, Graphics and Image Processing 55 (1992) 339–348.

5. Kropatsch, W.: Building irregular pyramids by dual-graph contraction. Vision,
Image and Signal Processing 142 (1995) 366–374.

6. Brun, L., Kropatsch, W.: Irregular pyramids with combinatorial maps. In Amin,
A., Ferri, F.J., Pudil, P., I nesta, F.J., eds.: Advances in Pattern Recognition,
Joint IAPR International Workshops SSPR’2000 and SPR’2000. Volume 1451 of
Lecture Notes in Computer Science., Alicante, Spain, Springer, Berlin Heidelberg,
New York (2000) 256–265.

7. Brun, L., Kropatsch, W.: Introduction to combinatorial pyramids. In G. Bertrand,
A. Imiya, R.K., ed.: Digital and Image Geometry. Volume 2243 of LNCS. Springer
Verlag (2001) 108–127.

8. Brun, L., Kropatsch, W.: Combinatorial pyramids. In Suvisoft, ed.: IEEE In-
ternational conference on Image Processing (ICIP). Volume II., Barcelona (2003)
33–37.

9. Brun, L., Kropatsch, W.: Contraction kernels and combinatorial maps. Pattern
Recognition Letters 24 (2003) 1051–1057.

10. Grasset-Simon, C., Damiand, G., Lienhardt, P.: Pyramids of n-dimensional gen-
eralized map. Technical Report 2, SIC, Université de Poitiers (2004)

11. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. In: International Journal of Computational Geometry and Applications.
(1994) 275–324.

12. Brun, L., Kropatsch, W.: Receptive fields within the combinatorial pyramid frame-
work. In: Discrete Geometry for Computer Imagery. Number 2301 in LNCS, Bor-
deaux, France (2002) 92–101.

13. Damiand, G., Lienhardt, P.: Removal and contraction for n-dimensional general-
ized maps. In: Discrete Geometry for Computer Imagery. Number 2886 in Lecture
Notes in Computer Science, Naples, Italy (2003) 408–419.

14. Lienhardt, P.: Subdivisions of n-dimensional spaces and n-dimensional generalized
maps. In: Proceedings of the fifth annual Symposium on Computational Geometry,
Saarbruchen, West Germany (1989) 228–236.

Resolution Pyramids on the FCC and BCC
Grids

Robin Strand1 and Gunilla Borgefors2

1 Centre for Image Analysis, Uppsala University,
Lägerhyddsvägen 3, SE-75237 Uppsala, Sweden

2 Centre for Image Analysis, Swedish University of Agricultural Sciences,
Lägerhyddsvägen 3, SE-75237 Uppsala, Sweden

{robin, gunilla}@cb.uu.se

Abstract. Partitionings on the face-centered cubic grid and the body-
centered cubic grid that are suitable for resolution pyramids are found.
The partitionings have properties similar to a partitioning that has been
used for the resolution pyramids on the cubic grid. Therefore, they are
well-suited for adapting methods to construct multiscale representations
developed for the cubic grid. Multiscale representations of images are
constructed using different methods.

1 Introduction

Three-dimensional images are usually captured into the cubic grid. Often, the im-
ages are computed from projections rather than captured directly. It is, however,
possible to adjust image capturing techniques such as CT or MRI to produce im-
ages on other grids, such as the face-centered cubic (fcc) and the body-centered
cubic (bcc) grids [1]. The sampling theorem allows a decrease of the number of
grid points by a factor 1.41 on the bcc grid compared to the cubic grid with-
out influencing the image representation/reconstruction quality, [1]. It has been
demonstrated that the hexagonal grid in two dimensions is theoretically better
than the square grid, [2]. For example, the hexagonal grid has a higher packing
density than the square grid. In three dimensions, the fcc and bcc grids both
have higher packing densities than the cubic grid. The fcc and bcc grids are the
three-dimensional “equivalents” of the hexagonal grid, [3]. Since it is very easy
to construct efficient data structures for the fcc and bcc grids, the only miss-
ing piece for allowing full use of the fcc and bcc grids in image processing is to
construct efficient algorithms for analysis and processing.

Data structures based on resolution pyramids can be used to improve both the
computation time and the quality in image analysis applications, e.g. matching
[4] and segmentation [5]. When using the two dimensional square grid or the
three dimensional cubic grid, partitioning is straightforward, [6]. The literature
on resolution pyramids on the hexagonal grid is rich, e.g., [7, 8, 9, 10]. In this
article, resolution pyramids on the fcc and bcc grids are examined.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 68–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Resolution Pyramids on the FCC and BCC Grids 69

In the first part of the article, we calculate partitionings that are suitable
for resolution pyramids on the fcc and bcc grids. We use conditions similar
to those derived for the hexagonal grid in [7]. The most important property
is that all levels in the pyramid should be represented by the same grid. The
partitionings have many properties in common with the partitioning used on
the cubic grid and are therefore well-suited for adapting methods to construct
multiscale representations developed for the cubic grid. Two different methods
are presented and illustrated using a running example.

2 The Grids

In [3], a grid G is defined as any set of points in Rn. In this article, we will use
three-dimensional grids on the form:

GT = {T (x, y, z) : x, y, z = a�v1 + b�v2 + c�v3, a, b, c ∈ Z}, (1)

where T is an affine transformation. We refer to �v1, �v2, and �v3 as base vectors.
By using this definition, we do not require the origin to be in the grid. We will
consider three types of grids:

Definition 1.
– With vectors �v1 = (1, 0, 0), �v2 = (0, 1, 0), and �v3 = (0, 0, 1), and a rigid

transformation T such that (1) is fulfilled, GT is a cubic grid, denoted Z3
T .

– With vectors �v1 = (1, 0, 1), �v2 = (0, 1, 1), and �v3 = (1, 1, 0), and a rigid
transformation T such that (1) is fulfilled, GT is an fcc grid, denoted FT .

– With vectors �v1 = (1,−1, 1), �v2 = (−1, 1, 1), and �v3 = (1, 1,−1), and a rigid
transformation T such that (1) is fulfilled, GT is a bcc grid, denoted BT .

If T = I is the identity mapping, then we use the notation G = GT .
For each grid point in an fcc grid, there are 12 face-neighbours and 6 vertex-

neighbours, resulting in the 12- and 18-neighbourhoods, see Fig. 1(b),(c). In a
bcc grid, the neighbours connected to a grid point are all face-neighbours, see
Fig. 1(e),(f). However, there are two kinds of face-neighbours, resulting in the 8-

(a) (b) (c) (d) (e) (f)

Fig. 1. A voxel (a) in fcc and its 12- and 18-neighbours, shown in (b) and (c) respec-
tively. A voxel in bcc (d) and its 8- and 14-neighbours, shown in (e) and (f) respectively

70 R. Strand and G. Borgefors

and 14-neighbourhoods. The light-grey voxels in Fig. 1 are referred to as first-
order neighbours and the white voxels as second-order neighbours. Throughout
this article, the set of object grid points are visualized by their voxels (the
Voronoi regions).

3 Tessellating the FCC and BCC Grids

3.1 Conditions for the Tessellations

In this section, a way to construct partitionings of the fcc and bcc grids is
presented. Note that we are not concerned with tiles in continuous space, but
with “patterns” of grid points. The goal is basically to cluster neighbouring grid
points in such a way that the centroid of the cluster will form a grid point in
the next level in a resolution pyramid, and these new grid points will form an
appropiate grid.

There is no standard notation for these clusters. The term “aggregate” is
used in [8] to denote a cluster in a resolution pyramid. The term “pattern”
is used in [7]. In [9], the same term is used for a matching operation using
resolution pyramids. A pattern is defined to be a vector of elements of the set
{0, 1, D}, where D indicates a “don’t care” position. A centroid of a cluster is
often referred to as parent and the elements in the cluster as children. We will
adopt the notation used in [7] with a slight modification.

The tessellation of a grid is carried out by clustering grid points together in a
pattern. Patterns in the hexagonal grid were examined in [7]. A generator Q ⊂ G
is a set of grid points, e.g., as in Fig. 2. By considering translations and rotations
of the generator, a larger subset of the grid is covered. The set P = {Pi, i ∈ I},
where I is a set of indices and Pi are the patterns, i.e., translations and rotations
of Q can be constructed such that there is an index i satisfying Pi = Q. The
centroids of the patterns will form a new grid at the next level in the resolution
pyramid.

Definition 2. The set P = {Pi, i ∈ I} tessellates the grid G if the following is
fulfilled:

– G =
⋃

i∈I Pi.
– For any two patterns Pi and Pj, Pi ∩ Pj = ∅ ⇐⇒ i �= j.

Example 1. Let Q = {(0, 0, 0), (1, 1, 1)} (see Fig. 2(b)) be a generator. A set of
patterns P that tessellates B can be constructed by translating Q by integer
multiples of (2, 0, 0), (0, 2, 0), and (0, 0, 2). If T is a translation from (0, 0, 0) to
the centroid of Q and a scaling by a factor 2, then the centroids of the patterns
satisfy the conditions for being a cubic grid in Definition 1. The new grid is Z3

T .

3.2 Finding Admissible Patterns

If we can construct a set of patterns such that the grid formed by the centroids of
the patterns GT is of the same type as the original grid G, then by repeating the

Resolution Pyramids on the FCC and BCC Grids 71

(a) (b)

a

b

c

d

(c)

Fig. 2. Examples of patterns in (a) fcc and (b) bcc. The grid points are color-coded as
in (c)

procedure recursively, a resolution pyramid with levels G,GT ,GT 2 , . . . ,GT m is
achieved. We will now calculate patterns that can be applied in such a recursive
manner.

Definition 3. Given a grid G, a set of patterns P is admissible if it fulfills the
following conditions:

P tessellates G.
The grid formed by the centroids of the patterns is of the same type as G.
For any pattern Pi, there is a one-to-one translation mapping S between the
generator Q and the pattern Pi, S : Q → Pi.
The pattern should be compact in the sense that it should be a connected set.

Conditions C1 and C2 are necessary for a pattern to be used in a resolution
pyramid where all levels form the same grid. The one-to-one mapping in C3 will
be used when labelling the grid points in the patterns. Moreover, C3 will be used
when searching for admissible patterns. Without condition C4, we might end up
in a set of patterns that is not suitable for resolution pyramids; we want a grid
point in one level to correspond to a set of connected grid points in the previous
level. The patterns obtained by the generators in Fig. 2 satisfy all conditions but
C2. In fact, both patterns form a cubic grid.

We denote the first level, the grid we start with, in the pyramid by G. The
second level, the grid formed by the centroids of patterns of the original grid, is
denoted GT . By repeating this procedure, the resolution pyramid consisting of
the levels G,GT ,GT 2 , . . . ,GT m is achieved.

Suppose that each Pi consists of n grid points. We denote by δG the distance
between two first-order neighbours in G. For the fcc and bcc grids F and B,
δF =

√
2 and δB =

√
3. If the set of patterns satisfies C1, then the new grid,

GT , will have 1/n as many grid points as the original, distributed over the same
volume. If it also satisfies C2, the distance between first-order neighbours in GT

is δGT
= 3

√
nδG. By C1, the patterns should also tessellate the grid, therefore n

must be an integer. We get the following condition:

C1

C2

C3

C4

72 R. Strand and G. Borgefors

Table 1. The grid points in G are sorted according to their distance to 0. This distance
will be the distance between first-order neighbours in GT , δGT . For each distance,
condition (2) is tested

fcc bcc cubic
δGT n # points δGT n # points δGT n # points√

2 1 12
√

3 1 8 1 1 6

2 2
3
2 6 2

(2
3

) 3
2 6

√
2 2

3
2 12

√
6 3

3
2 24

√
8

(8
3

) 3
2 12

√
3 3

3
2 8

√
8 8 12

√
11

(11
3

) 3
2 24 2 8 6√

10 5
3
2 24

√
12 8 8

√
5 5

3
2 24

√
12 6

3
2 8 4

(16
3

) 3
2 6

√
6 6

3
2 24

√
14 7

3
2 48

√
19

(19
3

) 3
2 24

√
8 8

3
2 12

4 8
3
2 6

√
20

(20
3

) 3
2 24 3 27 30√

18 27 36
√

24 8
3
2 24

√
10 10

3
2 24√

20 10
3
2 24

√
27 27 32

√
11 11

3
2 24

√
22 11

3
2 24

√
32

(32
3

) 3
2 12

√
12 12

3
2 8

(
δGT

δG

)3

= n ∈ N (2)

In order to find the admissible patterns, we need to label the grid points in the
patterns. We use the labels a,b, c, . . . as in Fig. 2. Assume that the generator Q
consists of n grid points. Each element in Q is given a unique label. By C3, for
any i ∈ I, there is a one-to-one mapping involving only translation between Q
and Pi. Therefore, each grid point is identified by exactly one of the labels.

Using the one-to-one mapping, it is easy to see that the distance between the
centroids of two patterns is equal to the distance between the a-points in the
patterns. Let 0 be the a-point of the generator Q. To find possible values of n,
we sort the grid points by their distances to 0 and check if (2) is fulfilled. This
is done by using δGT

= d(0, q), where q is the a-point in a neighbouring pattern.
There might of course be many grid points at the same distance from 0. We want
q to correspond to a first-order neighbour in the new grid GT . Therefore, there
must be at least as many grid points at distance δGT

as the number of first-order
neighbours in G. For comparison, we include the cubic grid in Table 1.

In Table 1, we see that the smallest admissible patterns on F have distance√
8 to the first-order neighbours. The generators are constructed by clustering

8 neighbouring grid points and checking that they satisfy C1–C4. A genera-
tor satisfying this is, e.g., Q = {(0, 0, 0), (1, 1, 0), (1,−1, 0), (1, 0,−1), (1, 0, 1),
(0, 1, 1), (0, 1,−1), (2, 0, 0)}. On B, the distance between first-order neighbours of
the centroids is δGT

=
√

12. We get, e.g., the generator Q = {(0, 0, 0), (1, 1, 1),
(1,−1, 1), (1, 1,−1), (1,−1,−1), (2, 0, 0), (0, 2, 0), (0, 0, 2)}. Both these set of

Resolution Pyramids on the FCC and BCC Grids 73

(a) (b)

(c) (d)

Fig. 3. A set of grid point in G = F, (a), and the corresponding set of grid points in
GT , (b). Analogously on a bcc grid, (c) and (d)

patterns satisfy C1–C4 and has the ratio (1 : 8), i.e., each pattern consists of
8 grid points. They are shown in Fig. 3. For both sets of patterns, if T is a
translation from (0, 0, 0) to the centroid of Q and a scaling by a factor 2, then
the centroids of the patterns satisfy the conditions for being an fcc/bcc grid in
Definition 1.

Note that these patterns are not unique; there are 24 possibilities satisfying
C1–C4 in each case. These patterns are obtained by rotation of the generator
around the x-, y-, and z-axes by multiples of π/2. This is in analogy with the pat-
terns in the usual cubic grid. Often, resolution pyramids on the cubic grid is based
on the generator {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 1)}. However, any 2 × 2 × 2 “cube” can be used as generator resulting in 8
possibilities.

From Table 1, the conclusion that none of the generators in Fig. 2 satisfy C2
can be drawn. The reason is that there is no pattern with ratio (1 : 4) or (1 : 2)
for which the centroids form an fcc or bcc grid.

74 R. Strand and G. Borgefors

4 Multiscale Representation of Binary Images

In this section, we will use the patterns obtained in the previous section to
construct resolution pyramids. Each grid point is assigned either the value 1 or
the value 0. In the figures, the value 1 will correspond to object and the value
0 will correspond to background. We need, given a set of 1:s in GT i , some rules
to decide which grid points should be assigned the value 1 in GT i+1 . Using the
binary image in Fig. 4 as a running example, different rules will be examined.
The images contains 18, 995 (fcc) and 18, 915 (bcc) object grid points. Observe
that, in order to show the details in the different levels in the pyramid, the images
are scaled. The shifting grid method and the intermediate grey-level method are
generalizations of the methods in [11, 12].

4.1 Simple Rules

The logical rules OR and AND form the simplest pyramids.

The resolution pyramids obtained by using these rules on the objects in Fig. 4
are shown in Fig. 5. Note that for thin structures, the OR-rule is the only sensible
choice, as otherwise the lower resolution levels will be empty.

(a) (b)

Fig. 4. A binary object on fcc (a) and bcc (b) used in the report

4.2 The Shifting Grid Method

In this method, the fact that there is an ambiguity when constructing the pat-
terns is used. As mentioned in Section 3.2, there are 24 possible patterns all

OR If any grid point in a pattern in GT i has value 1, then the corresponding
grid point in GT i+1 is set to 1.

AND If all gridpoints in a pattern in GT ihas value 1, then the corresponding grid
point in GT i+1 is set to 1.

Resolution Pyramids on the FCC and BCC Grids 75

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5. Resolution pyramids consisting of GT –GT3 ; (a)–(c) fcc, AND-rule; (d)–(f) bcc,
AND-rule; (g)–(i) fcc, OR-rule; (j)–(l) bcc, OR-rule

giving the ratio (1 : 8). The information obtained by considering the remaining
23 possible patterns can be used to construct a stable multiscale representa-
tion. The idea is to use all the possible patterns in 24 different grids, denoted
GT i

j
, where the subscript j ∈ {1, . . . , 24} denotes which one of the 24 differ-

ent patterns that is used. When constructing the GT i+1
j

images from GT i
j
, we

use the OR-rule to produce all the 24 possible images that can be constructed.
To combine these to one single image GT i+1 , the AND-rule is used: if all grid
points at a corresponding position in GT i+1

j
, j = 1, . . . , 24 are 1:s, then the grid

point in GT i+1 is set to 1. This method is called “AND-ing the ORs” shifting
grid method. Alternatively, by first using the AND-rule and then the OR-rule,
a similar method called “OR-ing the ANDs” shifting grid method is obtained.

When implementing this method, it is not necessary to compute all 24 in-
termediate images. It is enough to scan the image once and for each grid point
apply all the 24 patterns on the image in the previous level. By combining the
OR and the AND-rule (or the AND- and the OR-rule), a more efficient shape
preservation is obtained compared to the simple methods in Section 4.1. We get
connected objects with a tunnel even in the lowest resolution.

Resolution pyramids of the objects in Fig. 4 using the AND-ing the ORs
shifting grid method are shown in Fig. 6.

4.3 The Intermediate Grey-Level Method

As mentioned in the previous section, a scan through the image at level i is
enough to construct the image in level i+ 1 using the shifting grid method. The
idea resulting in the intermediate grey-level method is to simulate the construc-

76 R. Strand and G. Borgefors

(a) (b) (c) (d) (e) (f)

Fig. 6. Resolution pyramids consisting of GT –GT3 ; (a)–(c) fcc, AND-ing the ORs shift-
ing grid method; (d)–(f) bcc, AND-ing the ORs shifting grid method

tion of all possible patterns by using weights in a neighbourhood of each grid
point. Suppose that 0 is included in all of the 24 generators. On the fcc grid,
each first order neighbour is then included in 12 generators and each second
order neighbour is included in 4 generators. On the bcc grid, each neighbour
is included in 12 generators. These numbers will be the weights we use in the
method. A mask is constructed consisting of the grid point and all neighbours
of first and second order using these weights.

An intermediate grey-valued level G′
T is constructed by placing the weighted

mask at each a-point in the patterns in G and adding the weights of the mask
positioned on a grid point with value 1 in G. Now, we need to binarize G′

T to
achieve GT . The grey-level of a grid point in G′

T is denoted Σ. A low value of Σ
indicates a small number of neighbours with value 1. Thus, if Σ has a low value,
it would probably be set to 0 in the next level for most of the 24 patterns in an
image using only one of the 24 patterns. If Σ has a large value, it would probably
be set to 1. An intermediate value of Σ indicates that it would be set to 0 for
some of the patterns and to 1 for some patterns. To decide whether Σ should be
set to 1 or 0, we state an extra criterion based on the values of the neighbours of
Σ in G′

T . If Σ is larger than the average value in the neighbourhood consisting
of first- and second-order neighbours, then it is set to 1, otherwise to 0.

Criterion

If 0 ≤ Σ < 64 set p to 0
If 64 ≤ Σ ≤ 128 set p to 1 if Σ is larger than the average value in the
first-order neighbourhood centered at p.
If 128 < Σ ≤ 192 set p to 1

The thresholds that are used corresponds to the thresholds in [11]; the sum of the
mask values on the cubic grid is 64 and the thresholds used are 21 and 43. The
thresholds on the fcc and bcc grids are calculated by scaling these thresholds by
using the sum of the mask values on the fcc and bcc grids, 192. The thresholds
obtained by this procedure is 63 and 129. The method is, however, not very
sensitive to changes of the threshold values. To get symmetric intervalls, we use
the thresholds 64 and 128 instead. The values 60 and 124 or 68 and 132 would
give similar results. Resolution pyramids using this method are shown in Fig. 7.

Resolution Pyramids on the FCC and BCC Grids 77

(a) (b) (c) (d) (e) (f)

Fig. 7. Resolution pyramids consisting of GT –GT3 ; (a)–(c) fcc, the intermediate grey-
level image method; (d)–(f) bcc, the intermediate grey-level image method

Also in this case we get connected objects with a tunnel even in the lowest
resolution level.

5 Conclusions

The most commonly used resolution pyramid on the hexagonal grid has ra-
tio (1 : 7). One problem with this partitioning is that the grid is rotated by
arctan

√
3/5 for each level in the resolution pyramid. If the image is represented

by a hexagonal grid in each level, the image will be transformed by a rota-
tion which makes the resolution pyramid not suited for, e.g., comparing images
captured at different resolutions. In contrary, no rotation is needed for the parti-
tionings of the fcc and bcc grids suggested in this article. The resolution pyramid
on the cubic grid has the same ratio as the resolution pyramids in this article,
which makes methods for multiscale representations on the cubic grid easy to
adapt to the fcc and bcc grids.

As expected, the AND- and OR-rules for multiscale representation give poor
results. When using the AND-rule, to many grid points are set to 0 and when
using the OR-rule, too many grid points are set to 1. This implies that quality of
the image (the topology preservation and the perceived shape) rapidly decreases
when resolution is decreased. The perceived shape is better maintained using the
shifting grid and the intermediate grey-level methods. A difference between the
intermediate grey-level method and the shifting grid method is that when us-
ing the shifting grid method, each image obtained using the OR-rule is handled
separately. This gives a slightly different result compared to when all possible
patterns are handled simultanously using a mask. Also, when using the mask
in the intermediate grey-level method, all possible positions of the patterns are
considered, some of which might not be included in the shifting grid method. No
one of these methods guarantees topology preservation of objects as changes of
topology are unavoidable when the resolution is decreased. If we choose to main-
tain the connectedness of an object with a tunnel and decrease the resolution,
then for each level of the resolution pyramid, the tunnel will be smaller than in
the previous level. At some point, the tunnel will vanish. When the tunnels are

78 R. Strand and G. Borgefors

big enough, the shifting grid and the intermediate grey-level methods have nice
topology-preserving properties. They are also designed to remove the sensitivity
to where the object is positioned in the image. It is also worth noticing that the
intermediate grey-level method is faster, since a mask is used instead of applying
24 patterns at each grid point.

References

1. Matej, S., Lewitt, R.M.: Efficient 3D grids for image reconstruction using
spherically-symmetric volume elements. IEEE Transactions on Nuclear Science
42 (1995) 1361–1370

2. Bell, S.B.M., Holroyd, F.C., Mason, D.C.: A digital geometry for hexagonal pixels.
Image and Vision Computing 7 (1989) 194–204

3. Herman, G.T.: Geometry of Digital Spaces. Birkhäuser, Boston (1998)
4. Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algo-

rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (1988)
849–865

5. Rezaee, M.R., van der Zwet, P.M.J., Lelieveldt, B.P.F., van der Geest, R.J., Reiber,
J.H.C.: A multiresolution image segmentation technique based on pyramidal seg-
mentation and fuzzy clustering. IEEE Transactions on Image Processing 9 (2000)
1238–1248

6. Rosenfeld, A.: Multiresolution image representation. In Levialdi, S., ed.: Digital
Image Analysis. (1984) 18–28

7. Burt, P.J.: Tree and pyramid structures for coding hexagonally sampled binary
images. Computer Graphics and Image Processing 14 (1980) 271–280

8. Lucas, D., Gibson, L.: Image pyramids and partitions. In: Proceedings 7th inter-
national Conference on Pattern Recognition, Montreal. (1984) 230–233

9. Tanimoto, S.L., Crettez, J.P., Simon, J.C.: Alternative hierarchies for cellular logic.
In: Proceedings 7th international Conference on Pattern Recognition, Montreal.
(1984) 236–239

10. Ahuja, N.: On approaches to polygonal decomposition for hierarchical image rep-
resentation. Computer Vision, Graphics, and Image Processing 24 (1983) 200–214

11. Borgefors, G., Ramella, G., di Baja, G.S., Svensson, S.: On the multiscale repre-
sentation of 2D and 3D shapes. Graphical Models and Image Processing 61 (1999)
44–62

12. Borgefors, G., di Baja, G.S., Svensson, S.: Multiresolution representation of shapes
in binary images II: Volume images. In: Proceedings of Discrete Geometry for
Computer Imagery (DGCI 1997), Montpellier, France. (1997) 75–86

The Mojette Transform:
The First Ten Years

JeanPierre Guédon and Nicolas Normand

Laboratoire IRCCyN, Team Image & Video Communications CNRS UMR 6795,
École polytechnique de l’Université de Nantes La Chantrerie Rue Christian Pauc,

BP 50609, F-44306 Nantes cedex 3
firstname.lastname@polytech.univ-nantes.fr

Abstract. In this paper the Mojette transforms class is described. After
recalling the birth of the Mojette transform, the Dirac Mojette transform
is recalled with its basic properties. Generalizations to spline transform
and to nD Mojette transform are also recalled. Applications of the Mo-
jette transform demonstrate the power of frame description instead of
basis in order to match different goals ranging from image coding, wa-
termarking, discrete tomography, transmission and distributed storage.
Finally, new insights for the future trends of the Mojette transform are
sketched.

1 Introduction

1.1 The Word

”

Mojette”

Mojette” is a well known word in Poitiers; in old french, it describes the class
of white beans. Until recently, these white beans were the standard tool for
a child to start computing additions and subtractions. They were also used for
computing the number of victories for card games like Aluette” still played with
middle age spanish cards. Mojette is the name of our transform to remember
first that when only adds are invoked, the computations can be easily made,
second that by sharing the information pot each player will get a part of it.

1.2 The First Papers

The first paper on the Mojette transform has been published in 1995 after one
year of hard work. At the moment, we were looking for something that we still
did not find: a discrete mathematical tool that can split the Fourier plane into
radial and angular sectors. The initial application was the psychovisual image
encoding that mimics the human channelized vision. Hopefully, what we found
was so much practical that many applications did appeared later on. The first
talk on the Mojette transform (denoted MT in the following) was published in
SPIE Visual Communications and Image Processing [8]. The fact that a novel
transform was welcomed by the community was of prime importance to continue
this kind of research. Even if all the theory was not yet there, the structure of

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 79–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

“

“

80 J. Guédon and N. Normand

the transform was already explained by its first inverse version using a recursive
implementation. The first laboratory talk was given on June 22d 1995.

1.3 Related Works

The first two precursors of the Mojette transform were Myron Katz and Gabor
Herman. They were both looking at discrete geometric tools to properly inverse
the Radon transform at the beginning of the X-ray scan. The concept of discrete
angles that we used later on in the MT was taken from Myron Katz’ work [12].
Gabor Herman presented iterative algorithms to solve the equation f = Rp
where f is the image, R is a discrete Radon projection operator and p is the set
of projections obtained with a constant bin width [11]. In this regard, mixing
both works gives the Mojette transform.

The mood for a discrete Radon transform use only came back in the nineties;
except for pioneer works as Attila Kuba who was starting to see the generality
of the problem using discrete geometry in 1984 [13]. Guédon [9, 7] starts with a
spline version of the Radon transform in order to fill the gap between discrete
and continuous points of view. L. Dorst added a major point by linking the
Radon (or slope) transform to mathematical morphology [3] as independently
we did obtained our first reconstruction theorem by this link to the two pixel
structuring element. Notice that a big step has been made in 1999 when Jean-
Marc Chassery did organize a workshop on discrete tomography that was using
discrete geometry for mixing the kind of solutions for a given polyominos problem
[2] with the complexity of others very close problems [5, 6]. However, it must be
clear here that the Mojette transform does not exactly belongs to the ”discrete
tomography” community in the sense the word was defined by Larry Shepp in
1994, i.e. reconstructing an object from two to four projections.

A novel situation arises now, when many and very interesting papers are
published to express different properties of transforms very close to the MT as
[22] and unread papers come back to the community as [14].

1.4 Paper Organization

The paper is split into theoretical results and applications. The second section of
the paper reviews the properties of the Mojette transform. The simple definition
of the direct Mojette transform (that will be described by Dirac-Mojette after-
wards) is first presented and its fast inversion (same order of complexity than
the direct operator) follows. The strong relationships with mathematical mor-
phology are then presented because they constitute both the core of the proofs
of the reconstruction theorems we obtained and the geometric way to cope with
the transform. The generalization to spline Mojette transform and other kernels
are then presented to show the power of the relationships between continuous
and discrete words. In other words, this link allows for translating various prob-
lems such as tomography into the discrete geometry world. Finally, extensions
to higher dimensions demonstrate two notions : the order of complexity of the
transform is still linear in the number of pixels, voxels, ixels (information ele-

The Mojette Transform: The First Ten Years 81

ments) and linear into the number of hyperplanes. The third section present the
variety of applications already found for the Mojette transform. The key point
that is used here is the frame description notion (instead of the classical vectorial
basis). Its first obvious success (because of its direct implementation) was to use
the Mojette transform as a tool for multiple description which has evolved to
a kind of new standard for communications[17]. A step further in this area was
to add the hierarchical (or multiresolution) data description with the concept
of multi-layer buffering. Another completely different application was to mas-
ter the noise properties into the Mojette domain in order to allows the Mojette
transform for tomographic reconstruction. Even if this sounds obvious from the
Radon inheritance, this works is the last one we were able to perform. Back to
the image domain, the Mojette transform has been successfully implemented to
solve for new techniques as watermarking as well as texture analysis for image
and video as presented in this section. The final part of the paper gives some
insights for the next ten years.

2 Basic Mojette Transform Properties

2.1 Direct and Inverse Dirac-Mojette Transform

The mojette transform is derived from the Radon transform [20]. The 2-D trans-
formed domain consists in projections (in the Radon sense) where each calcu-
lated element called a bin is the sum of ixel values. However, from an original
block f(k, l) of information elements (denoted ixel for information element), the
Mojette transform gives a linear set of projections projθ(m) only for specific
angles of the form θ = atan(q/p) where p ∈ Z, q ∈ Z+ and are relatively prime
(GCD(p, q) = 1). The Mojette transform set is defined by Mf(k, l) as a set of I
projections Mp,qf(k, l), where (k, l) belongs to the ixels block and Δ(m) = 1 if
m = 0, 0 otherwise, as follows:

Mf = {Mpi,qif, i = 1, . . . , I} = {projpi,qi , i = 1, . . . , I} (1)
Mp,qf(k, l) = projp,q(m) = projθ(m) = f(k, l)Δ(m + qk − pl), (2)

A bin value is then simply the summation of every ixel intersecting the line
m = − qk + pl. As described in Fig. 1, the major difference with the Radon
transform is that the bin spacing on a projection depends on the projection
angle.

The well-posed nature of this linear transform and its explicit discrete nature
were the reason of the new name not to confuse with the numerous regularized
versions of the Radon transform (ill-posed inverse operator). A direct conse-
quence of this sampling is that the number of bins of the projection indexed
by (p, q) depends both of the projection angle and of the block dimensions. For
instance, a P ×Q rectangular block has its (p, q) projection composed of B bins
with B = (Q − 1)|p| + (P − 1)|q| + 1. The order of complexity of the direct
transform is obviously O(IN) i.e. linear in the number of (p)ixels N and linear
in the number of projections I.

82 J. Guédon and N. Normand

Fig. 1. Mojette Transform of a 3 × 3 f(k,l) lattice

The inverse transform can be implemented with the same order of complexity.
This is an important characteristic of the Mojette transform which comes from
the underlying mathematical morphology properties as described in the next
paragraph. To get such a result, the reader has to pay attention to the projection
of the ”corners” of the shape: they exhibit some one to one ixel-bin relationships.
Thus, these specific bins can be exactly backprojected in the image as soon as we
keep for each bin the number of contributed ixels during the inverse transform.
The tool for the proof of this algorithm (given in [15]) is now presented.

2.2 Mathematical Morphology

Reconstruction conditions were demonstrated for any convex image [15] by as-
sociating a projection angle (p,q) with a 2 pixels structuring element (2PSE) as
a point couple {O, (p, q)} giving the same direction axis. The set of ixels that
are projected in one bin m is the intersection of the image with the (p, q) − line
defined by: −qk + pl = m. If the image is convex, this set is connected relative
to the (p, q)-neighborhood (all ixels are reachable from the others using (p, q)
displacements). Thus, an opening (an erosion followed by a dilation) with the
2PSE {O, (p, q)} will empty the set if it is composed of exactly one ixel but will
leave it unchanged in all other cases. The back projection in direction (p, q),
by removing all ixels in a one to one correspondence with a bin, results in the
opening of the image with the 2PSE:

I ′ = I ◦ {O, (p, q)} .

An ixel disappears from I only if it has no (p, q)-neighbor.
The final reconstruction result is not affected by the order bins are back

projected. So the overall reconstruction can be viewed as an iterative series of
openings with the 2PSEs:

Ik+1 = Ik ◦ {O, (p1, q1)} ◦ . . . ◦ {O, (pI , qI)} .

The Mojette Transform: The First Ten Years 83

Fig. 2. Reconstructibility of a convex image

The reconstruction stops if no ixels can be removed by any projection (Ik+1 =
Ik or Ik+1 = ∅). This occurs when every ixel in the image has at least one
(p, q)-neighbor in every (p, q) direction. The smallest non-null image with that
property is built by the series of dilations with the 2PSEs.

The reconstructibility criteria of Katz finds here another expression only
using dilations. A convex image is not reconstructible if and only if the dila-
tion result by 2PSE is not included in the image support (even if one pixel
is concerned). This general result is expressed in the following theorem by the
equivalence of two statements.

Theorem 1. Both propositions are equivalent

– f(k, l) defined on the convex G is reconstructible by {projpi,qi
, i = 1, . . . , I};

– R constructed by I dilations set {{O, (pi, qi)}, i = 1, . . . , I} is not included
in G.

Corollary 1. Both propositions are equivalent

– G is reconstructible by {projpi,qi
, i = 1, . . . , I};

– the erosion of G by R is null.

This inversion criterion is an extension of Katz’ criterion for rectangular
images. In that particular case, R can be included in the image if its width
(1 +

∑
i |pi|) and height (1 +

∑
i |qi|) are respectively smaller than the width P

and height Q of the image. Thus, for a P ×Q image, a complete reconstruction
is achievable if [12]:

P ≤
∑

i

|pi| orQ ≤
∑

i

|qi| (3)

2.3 Spline Mojette Transform

The previous Mojette transform is denoted Dirac-Mojette transform because the
underlying 2D ixel representation is a Dirac field:

f(x, y) =
∑

k

∑
l

f(k, l)δ(x − k)δ(y − l) . (4)

84 J. Guédon and N. Normand

However, very similar angles like (p, q) = (1, 1) and (p, q) = (30, 29) will do not
have similar bin values: a direct inter-correlation computation between the two
projections will be poor because the number of bins and the number of pixels
contributing to each bin will be very different. However, Philippé and Guédon
[19] have shown that the autocorrelation of the Mojette projection corresponds
to the projection of the autocorrelation of the image.

Summing ixel intensities weighted by the relative length of the ray inside
each ixel, defines the spline0-Mojette transform. The corresponding continuous
image is given by:

f(x, y) =
∑

k

∑
l

f(k, l)β0(x − k)β0(y − l) , (5)

where β0(x) = 1 when |x| < , β0() = and 0 elsewhere.
It can be simply shown that the spline0-Mojette transform corresponds to

the filtering of the Dirac-Mojette transform with a finite impulse response (FIR)
filter. The FIR filter definition wp,q(m) corresponds to a trapezoidal shape, i.e.
the projection of the shape of the ixel (a square in 2D) as described in [10].

M0f = [MDf] ∗ wp,q , (6)

Where the kernel w can always be decomposed with small filters composed of
unitary values. In other words only additions can be used for implementation
of this convolution and the recursive filter that implements the inverse operator
(going from spline0 to Dirac Mojette data) will only use subtractions.

The generalization to higher spline order Mojette transform follows the same
pattern. From a βn spline definition of the original function given as:

f(x, y) =
∑

k

∑
l

f(k, l)βn(x − k)βn(y − l) , (7)

with βn(x) = βn−1(x) ∗ β0(x), the splinen-Mojette transform is defined as:

Mnf(k, l) = [Mn−1f] ∗ wp,q(b) . (8)

The main originating reason to use spline functions instead of Dirac fields is to
complied with the generalization of the well-known Shannon-Wittaker sampling
theorem obtained by Unser and AlDroubi [1, 23, 24, 25]. This theorem allows to
combine the projection decomposition with other image needs like wavelet or
geometric (e.g. rotation) operators.

The main use of spline Mojette transform is to introduce a controlled re-
dundancy inside each projection via the kernel w. Direct applications to error
correcting codes have already been obtained [21] in the presence of noise in-
side the projection data. This intra-redundancy can be managed at the same
time that the inter projections redundancy to answer consistency of distributed
information projections as shown in the applications.

The Mojette Transform: The First Ten Years 85

2.4 nD Mojette Transform

Going from 2D results to 3D then nD is an indefectible temptation to generalize
the obtained results. This was done by still considering the Mojette transform as
giving (n− 1)D hyperplanes from the nD discrete hypervolume. It can be easily
shown that from N ixels distributed inside a convex set of dimension n and a
choice of I hyperplanes, the direct and inverse Mojette transform still exhibit a
complexity order of O(IN). This is quite obvious for the direct transform. The
way of having this very low cost algorithm for the inverse transform is to use the
same mapping than previously used in 2D between ixels and bins. As a matter
of fact, this mapping is dimension independent.

Another result that can be seen as independent of the dimension is the dis-
crete central slice theorem (CST). The continuous version of the CST has been
extensively used for Radon inversion as well as for image processing. It says that
the 1D Fourier transform of a projection of angle θ equals the slice of the 2D
Fourier transform of the image at angle θ+π/2. The discrete version of this the-
orem was established in 2D by Dudgeon and Mersereau using the Z transform
[4]. It has been checked with the 2D Mojette transform and extended to higher
dimensions in a straightforward manner [26].

2.5 Mojette Transform and Redundancy

The Mojette transform matrix M is only filled by 1 and 0 values. Only addi-
tions and subtractions are required for M and M∗. It is also the case for M−1

with the inverse Transform algorithm for exact values [15]. The matrix M∗M is
Toeplitz-block-Toeplitz. Since only the additive group structure is needed for its
definition, replacing the natural addition by modulus addition will not change
any property of the transform. This can be done as soon as the initial values of
the ixels are quantized onto an interval [0, 2b[where b represents the number of
bits of an ixel. In this case, a bin will belong to the same interval (by modulus
addition), so do the reconstructed ixel. This represents an important matter for
not having an overbinary representation in the Mojette domain as well as to use
the same type of elements in both domains.

The computation of a redundancy factor as Red = #Bins/#Ixels− 1, gives
the true weight for managing a frame. However, this Red indicator does not
explain at all the stability of the transform under inconsistency (e.g. noise)
considerations. In such a case, the number of projections as well as the dif-
ference between the initial shape and the dilations of two ixel structuring el-

Fig. 3. Redundancy of three sets of projections under a 5 × 5 f(k, l) lattice

86 J. Guédon and N. Normand

ements (2ISE) will better explain the power of recovering inconsistency. For
instance, for a 5 × 5 convex, the sets S0 = {(5, 3)}, S1 = {(3, 2), (2, 1)} and
S2 = {(1, 0), (−1, 1), (1, 1), (2, 1)} all fulfill the reconstruction conditions and give
Red= 8/25. The corresponding reconstructed shapes are illustrated in Fig. 3.

The importance of splitting the initial information into (projection) pieces
can be pictured as in the previous figure or computed as the conditioning factor
of the matrix M ∗ M . In this example, when the first degenerated information
set gets a false bin value it will not been detected at the reconstruction step, the
second set will detect the error but not correct it as the third set does.

3 Applications

The power of the Mojette transform lies in it abilities to manage inconsistency.
The first way to have inconsistent data is to have not enough data whereas it
exists some intrinsic correlation inside the data as shown in the last paragraph
of section two. In this case, only some partial exact descriptions of the infor-
mation are available: this corresponds to the multiple description problem. This
information can also already be sorted in an hierarchical manner and treated
with the same formalism through the use of the Mojette transform. The second
case is the shape description problem through some of its projections, where the
Mojette transform becomes a geometric tool when allied with the mathematical
morphology. The third case of inconsistent data arises when metadata is added
inside the data as for the watermarking techniques. Then the two coexisting
kinds of data must have different behaviors (one must be shown while the other
should lie under the expressed data until a specific algorithm can reveal it. The
fourth case is when enough projections are available but are corrupted by noise
such that only an approximation can be computed as for tomography.

3.1 The Use of Redundancy: The Multiple Description Tool

The multiple description problem arises in the seventies and was studied by
Ozarow and others as an information theory problem for telephony over two
channels [16]. It has been developed for a decade for Internet transmission and
now for distributed storage. The paradigm is as follows: given an initial infor-
mation set, computes I different descriptions such that for a lower number of
descriptions there is still always an approximation that can be computed and
used usually for real-time considerations.

Many kind of solutions have been employed ranging from Turbo-codes, Solo-
mon codes, Tornado codes and of course Mojette projections. The major prop-
erty of these codes is generally to be Minimum Description Separable (denoted
MDS), that is without redundancy as for Solomon or Tornado codes or (1 + ε)-
MDS as for the Mojette codes demonstrated by Parrein [17]. The price of the
redundancy can be easily paid to gain much more flexibility in the design of the
code (which means to choose a pair of shape and set of projections) whereas
Solomon codes must be only determined from Galois field GF (2n).

The Mojette Transform: The First Ten Years 87

Fig. 4. An image support of height Q = 2 with directions (0, 1), (−1, 1) and (1, 1). Any
combination of two projections is sufficient to reconstruct the image

For the basic Mojette solution, a rectangular shape P × Q with (P � Q) is
employed in conjunction with a set of I projections:

SQ = {(p1, 1), (p2, 1), . . . , (pQ, 1)} .

With these particular directions (∀i, qi = 1) the image is reconstructible with
as least Q projections among I according to Katz’ criterion Eq. 3 (the height of
the smallest non-invertible image equals the number of received projections plus
one). The value P × Q gives the amount of data that can be transferred at a
time (available bandwidth), I −Q is number of extra projections (descriptions)
sent over the channel to protect against data losses.

With this simple image support, protection against losses is equal for all data.
More precise control of the redundancy can be achieved with a concatenation
of image supports of different heights, allowing to fit the protection level to
the importance of the data: the less important the data, the higher the image
support [18].

Finally, when the initial data exhibits some intra correlation, phantoms can be
used to produce an approximated reconstruction from an iterated algorithm [19].

Distributed storage organization and management can follow the same path.
Initial data are taken and dispatched after the Mojette operation giving A pro-
jections. When a small fixed number B(B � A) of different projections issued
from the A set are stored on each of the S servers then the Mojette organization
is made and gives the following management properties:

– if a server is attacked and destroyed by hackers, its content can be restored
by any set of other servers as soon as it meets the Mojette reconstruction
requirement,

– if a server content is stolen, its content can not be useful by itself (several
servers have to be attacked at the same time),

– from the user side, the ask data will arrive from different sources and routes,
which will decrease the network congestion and increase the trust in the data.

88 J. Guédon and N. Normand

3.2 Discrete Tomography Tool

The continuous Radon transform described by :

proj(t, θ) = R(t, θ)[f(x, y)] =
∫

f(x, y)δ(t − xcosθ + ysinθ)dxdy , (9)

represents the continuous function f(x, y) by an infinite set of projections. The
functional projection of f(x, y) onto a spline space {φ(x− k), k ∈ Z} leads to an
interpolation equation:

fφ(x, y) =
∑

k

∑
l

f(k, l).φ(x − k).φ(y − l) . (10)

When the discrete pixel grid is considered in the tomographic problem, the func-
tion f(x, y) in Eq. 9 is replaced by fφ(x, y) of Eq. 10. This leads (after inverting
discrete and continuous sum signs) to a definition of the continuous projection
from a discrete image and the spline interpolating function.

For tomographic purposes, φ is not taken as φ(x) = δ(x) but rather as a spline
function to express the ”quality of the physical length” that can be recorded at
the detector.

This Mojette sampling has been used both for direct spline FBP algorithm
and for iterative conjugate gradient algorithm in the presence of noise with good
results. The only remaining problem consists in the rebinning of the initial data
recorded from the tomographic device.

3.3 Image Watermarking

Watermarking represents the way of transferring invisible data inside data. It
can be text in text as in the private correspondence of George Sand with Alfred
de Musset or more generally marks informations inside images or videos in order
to carry the rights of the author and all the business steps allowing to sell
information bytes. The invisibility notion is taken in the human sense, thus the
locations to put this information into the carrier information must be given by
psychovisual studies. The employed tool that implements the mixture of both
information must be flexible enough both to use the given locations and be robust
to image attacks as low-pass filtering, small rotation, and image compression for
instance.

The Mojette transform in this context has produced different kinds of tools.
The first one consists to watermark the projections instead of the image. This
technique has also been lately develop by Macq and others in the Radon do-
main. The clue is to obtain an inconsistent set of informations from the marked
projections in order to resist to rotation attacks.

The second tool is related to Normand’s inversion algorithm that use pixel-
bin correspondences at each step. By adding a controlled quantity of noise in
the projections (in the proportion of the redundancy Red factor) the recon-
struction becomes impossible because of the ill-posed properties of the Radon
transform. However, if for each reconstructed pixel the choice can be made (at

The Mojette Transform: The First Ten Years 89

the coder step) to avoid corrupted bins then a unique reconstructing path can
be determined and encoded as the clue to decode the image. In other words, a
cryptographic scheme is obtained.

The first unsolved question lies in the possibility to decode the crypto-
tattooed image thanks to the linearity of the transform even if the modulus
addition is employed. As a matter of fact, this problem has to be solve thanks
to both the Red factor and the possible decodable errors inside Mojette data :
discrete group theory allied with geometry seems the right way to cope with this
problem.

Another interesting question arises from the psychovisual locations able to
hide a message. A soon as these locations are computed (with a respective
strength for each pixel), the best set of projections can only be calculated by
testing all the resulting phantoms (very large set) that can match the greater
number of positions to assess the robustness of the watermarking. Going from
this NP complete problem to a polynomial solution seems feasible using discrete
shape descriptions and superimpositions.

We are confident that such a tool will be usefully employed in many other
applications because of its intrinsic redundancy properties. However, it should
be stressed again that the strong link between projections and discrete directions
thus shape is today the only way to get mathematical tools to solve for problems.
As soon as this projection structure disapear and is replaced by a simple set of
bins, the tools complexity become NP complete instead of linear. This has been
the case both for watermarking and for obtaining compression scheme from the
right set of bins when each of them reconstructs an entire line of ixels.

4 Conclusion

This paper has matched the timing for the ten years of a new transform coming
from the word of discrete geometry. It allows for reviewing both what has been
done in the theory and to demonstrate that discrete geometry can be an im-
portant tool for network optimization or distributed storage. These trends must
and will be continued and amplified for the next ten years.

Acknowledgements

The authors would like to thank Jean-Marc Chassery for his indefectible help to
promote the Mojette transform and Éric Andres and the DGCI board for their
kind invitation to write this paper.

References

1. Akram Aldroubi and Murray Unser. Families of wavelet transforms in connection
with Shannon’s sampling theory and the Gabor transform. In C. K. Chui, editor,
Wavelets: A Tutorial in Theory and Applications, pages 509–528. Academic Press,
1992.

90 J. Guédon and N. Normand

2. Alberto Del Lungo, Maurice Nivat, and Renzo Pinzani. The number of convex
polyominoes reconstructible from their orthogonal projections. Discrete Math.,
157(1-3):65–78, 1996.

3. Leo Dorst and Rein van den Boomgaard. Morphological signal processing and the
slope transform. invited paper for Signal Processing, 38:79–98, 1994.

4. Dan E. Dudgeon and Russell M. Mersereau. Multidimensional Digital Signal Pro-
cessing. Prentice-Hall, 1984.

5. Richard Gardner. Geometric Tomography. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1995.

6. Peter Gritzmann and Maurice Nivat, editors. Discrete Tomography: Algorithms
and Complexity, number 97042, Germany, jan 1997. Dagstuhl.

7. JeanPierre Guédon. Les problèmes d’échantillonnage dans la reconstruction
d’images à partir de projections. PhD thesis, Université de Nantes, Novembre
1990.

8. Jeanpierre Guédon, Dominique Barba, and Nicole Burger. Psychovisual image
coding via an exact discrete radon transform. In Lance T. Wu, editor, VCIP’95,
pages 562–572, Taipei, Taiwan, may 1995. CORESA.

9. JeanPierre Guédon and Yves Bizais. Bandlimited and haar filtered back-projection
reconstuction. IEEE transaction on medical imaging, 13(3):430–440, September
1994.

10. JeanPierre Guédon and Nicolas Normand. Spline mojette transform. application
in tomography and communication. In EUSIPCO, sep 2002.

11. Gabor T. Herman and M. D. Altschuler. Image Reconstruction from Projections -
Implementation and Applications. Topics in Applied Physics. Springer-Verlag New
York, oct 1979.

12. Myron Katz. Questions of uniqueness and resolution in reconstruction from pro-
jections. Lecture Notes in Biomathematics. Springer-Verlag New York, dec 1978.

13. Attila Kuba. The reconstruction of two-directionally connected binary patterns
from their two orthogonal projections. Comput. Vision, Graphics. Image Process.,
(27):249–265, 1984.

14. F. Matus and J. Flusser. Image representation via a finite radon transform. IEEE
transaction on pattern analysis and machine intelligence, 15(10):996–1006, oct
1993.

15. Nicolas Normand and Jeanpierre Guédon. La transformée mojette : une repré-
sentation redondante pour l’image. Comptes-Rendus de l’Académie des Sciences,
pages 123–126, jan 1998.

16. L. Ozarow. On a source coding problem with two channels and three receivers.
Bell Sys. Tech. Journal, 59:1909–1921, 1980.

17. Benôit Parrein, Nicolas Normand, and Jeanpierre Guédon. Multiple description
coding using exact discrete radon transform. In Data Compression Conference,
page 508, Snowbird, mar 2001. IEEE.

18. Benôit Parrein, Nicolas Normand, and Jeanpierre Guédon. Multimedia forward
error correcting codes for wireless lan. Annals of telecommunications, (3-4):448–
463, mar-apr 2003.

19. Olivier Philippé and Jeanpierre Guédon. Correlation properties of the mojette
representation for non-exact image reconstruction. In ITG-Fachbericht Verlag,
editor, Proc. Picture Coding Symposium 97, pages 237–241, Berlin, sep 1997.

20. Johan Radon. Über die bestimmung von funktionen durch ihre integralwerte längs
gewisser mannigfaltigkeiten. Ber. Ver. Sächs. Akad. Wiss. Leipzig, Math-Phys.
Kl., 69:262–277, April 1917. In German. An english translation can be found in S.
R. Deans: The Radon Transform and Some of Its Applications, app. A.

The Mojette Transform: The First Ten Years 91

21. Benôit Souhard, Christian Chatellier, and Christian Olivier. Simulation d’une
châine de communication adaptée à la transmission d’images fixes sur canal réel.
In CORESA, Lyon, jan 2003.

22. Imants Svalbe and Andrew Kingston. Farey sequences and discrete radon trans-
form projection angles. In IWCIA’03, Palermo, may 2003.

23. Michael Unser, Akram Aldroubi, and Murray Eden. Polynomial spline signal ap-
proximations: Filter design and asymptotic equivalence with shannon’s sampling
theorem. In IEEE Transaction on Information theory, volume 38, pages 95–103.
IEEE, 1992.

24. Michael Unser, Akram Aldroubi, and Murray Eden. B-Spline signal processing:
Part I - Theory. IEEE Trans. Signal Process., 41(2):821–833, Feb 1993.

25. Michael Unser, Akram Aldroubi, and Murray Eden. B-Spline signal processing:
Part II - Efficient design and applications. IEEE Trans. Signal Process., 41(2):834–
848, Feb 1993.

26. Pierre Verbert and Jeanpierre Guédon. An exact discrete backprojector operator.
In EUSIPCO, Toulouse, 2002.

On the Stability of Reconstructing Lattice Sets
from X- ays Along Two Directions

Andreas Alpers1 and Sara Brunetti2

1 Zentrum Mathematik, Technische Universität München,
Boltzmannstr. 3, D-85747 Garching bei München, Germany

alpers@ma.tum.de
2 Dipartimento di Scienze Matematiche e Informatiche,

Universitá degli Studi di Siena, Pian dei Mantellini 44, 53100 Siena, Italy
sara.brunetti@unisi.it

Abstract. We consider the stability problem of reconstructing lattice
sets from their noisy X-rays (i.e. line sums) taken along two directions.
Stability is of major importance in discrete tomography because, in prac-
tice, these X-rays are affected by errors due to the nature of measure-
ments. It has been shown that the reconstruction from noisy X-rays
taken along more than two directions can lead to dramatically different
reconstructions. In this paper we prove a stability result showing that
the same instability result does not hold for the reconstruction from two
directions. We also show that the derived stability result can be carried
over by similar techniques to lattice sets with invariant points.

1 Introduction

The main problem in discrete tomography is to reconstruct lattice sets (or equiv-
alently, binary pictures) from their X-rays, that is, from the number of its points
lying along lines parallel to any set of prescribed directions. In practice, these
X-rays are affected by noise. In [3] the authors investigate the stability of the
problem of reconstruction from X-rays taken from m ≥ 3 lattice directions. In
this case they show that a small change in the data (of 2(m−1) measured in the
�1-norm) can lead to a dramatic change in the reconstruction. This instability
persists even when the original is uniquely determined by its exact X-rays. This
paper addresses the open question whether the reconstruction of lattice sets from
X-rays along two directions is also an unstable task.

In this paper we analyze the case m = 2 with the same kind of data errors as
in [3], i.e., where 2(m−1) = 2. We show in Theorem 17 that lattice sets which are
uniquely determined by their X-rays along two directions can only have stable
reconstructions even if the X-rays are changed by 2 (in the �1-norm). It still
remains open what happens if there is a higher perturbation in the data. In any
case, we show that a similar combinatorial reasoning leads to provable stability
results (Theorem 25) when the requirement of uniqueness on the original set is
weakened to the assumption that in every reconstruction there exists a suitable
number of invariant points.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 92–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

R

On the Stability of Reconstructing Lattice Sets 93

Other kinds of mathematically proved stability results can be found in [1], [2],
[5] and [6]. Reports on the stable behavior of reconstruction algorithms which in-
corporate a-priori knowledge can be found in [11] and [15]. For details on discrete
tomography we refer to [8]. More about (0, 1)-matrices can be found in [4]. In-
variant sets have been intensively studied by many authors (e.g. [7],[9],[13],[14]).

2 Notations and Statement of the Problem

The elements of F2 = {F ⊂ Z2 : F is finite} are called lattice sets, and the
subspaces lin {v} ⊆ R2, v ∈ Z2 \ {0} are called lattice directions. For a lattice
direction S, we define A(S) = {w + S : w ∈ Z2}. The (discrete) X-ray of
F ∈ F2 parallel to S is the function XSF : A(S) → N0 = N ∪ {0} defined by
XSF (T) = |F ∩ T |, for each T ∈ A(S).

In this paper we always consider X-rays from two directions S1, S2. By affine
transformations of the grid we can assume in the following that S1 = lin {(1, 0)}
and S2 = lin {(0, 1)}, thus we speak of X-rays along horizontal and vertical
lines, or even about row and column sums. It is clear that the X-rays can be
assembled as a vector. Let two lattice sets F1, F2 be given. We will denote its
vector containing the row sums by Ri and the vector containing the column sums
by Ci, i = 1, 2, respectively. Notice that we assume that the i-th entries of R1
and R2 refer to the same (horizontal) line, which can be achieved by inserting
zero-entries. We make the same assumption on the entries of C1 and C2.

For F1∈F2 let F2(F1) :={F2∈F2 : |F1|= |F2|∧||R1−R2||1+||C1−C2||1 =2}.
So, we focus on the question: Let F1 ∈ F2, uniquely determined by R1 and C1.
What is the sharpest upper bound on maxF2∈F2(F1) |F1�F2|?

3 Preliminary Remarks

Since F1 ∈ F2 is finite, it is contained in a rectangle whose rows and columns
are non-empty. We refer to them also as the rows and the columns of F1. If p
is a point of F1 lying in the ith row and jth column, we write that row(p) = i
and col(p) = j. Sometimes we do not distinguish between the row itself and its
index. We use the convention that the rows and columns are numbered starting
from its left-upper corner (see Figure 1 (a)).

We can change the coordinates of each point in the rectangle by first permut-
ing the columns so that C1 is a non increasing vector, and then permuting the
rows so that R1 is also a non increasing vector. This is a one-to-one function on
the points of the rectangle yielding a triangular shape when the set is uniquely
determined by its X-rays (it is a maximal matrix with non increasing row sums,
see [12]). So, we shall assume that F1 has a triangular shape, like in Figure 1 (a).

The following remarks concern the X-ray errors. Proposing an X-ray error
of 2 means that the error occurs on exactly two lines of a single direction. This
follows from the assumption |F1| = |F2|. Indeed the sum of the X-ray values
according to one direction equals the cardinality of the set to be reconstructed,

94 A. Alpers and S. Brunetti

col 2col 1 col 3 col 4 col 5

row 1

row 2

row 3

row 4

row 5

(a) The enumeration
of rows and columns

1

2

1

1

2

2

S

B

W

W

B

S

(b) An example showing F1

and F2 like in Lemma 13

Fig. 1. An illustration of sets F1 (black points) and F2 (white points). Points of F1∩F2

are colored half white and half black

and so if there is exactly one line where the error is −1 (which will in the following
mean that there is one point more of F2 \ F1 than of F1 \ F2 on the line), then
there exists exactly one line with a +1-error (meaning that there is one point
more of F1 \ F2 than of F2 \ F1 on the line). Furthermore, by possibly rotating
F1 and F2 we may assume that the error occurs along horizontal lines (rows). If
F2 contains a single point on a horizontal line, then we can assume without loss
of generality that it is row 1.

Remark 1. In summary, we assume in the rest of the paper that F1 is a maximal
matrix with sorted rows (or equivalently, row and column sum vectors are mono-
tone and uniquely determine F1), |F1| = |F2|, and the error occurs in exactly
two rows (consequently in no columns).

Remark 2. Let p be any point of F2 \ F1 and let q be any point of F1 \ F2.

(a) From the shape of F1 we have:
- if col(p) = col(q), then row(p) > row(q);
- if row(p) = row(q), then col(p) > col(q).

(b) Since no column error occurs: the point p exists if and only if the point q
exists, with col(p) = col(q). Similarly, in the rows in which no error occurs:
p exists if and only if q exists, with row(p) = row(q).

Lemma 3. Let i be the row where the −1 error occurs, and let j be the row
where the +1 error occurs. Then i > j.

Proof. Suppose that i < j; then we show that there is an infinite sequence
of points in F1�F2 starting with a point p of F2 \ F1 in the ith row. Since
the −1 error occurs in the ith row, at least a point p of F2 \ F1 exists in this
row. By Remark 2 (a) and (b), for any p, a point q of F1 \ F2 exists such that
col(p) = col(q) and i = row(p) > row(q). Since there is no error in any row with
index less than i, we conclude with Remark 2 (a) that there exists also a point

On the Stability of Reconstructing Lattice Sets 95

p′ of F2 \F1 in row(q), then again a point q′ of F1 \F2, etc., all of which lie in a
row with index less than i. This leads to an infinite sequence of points in F1�F2
which is not possible. �

3.1 Staircases

Definition 4. Let A,B ∈ F2 with A ∩ B = ∅. A staircase T = (t1, . . . , tm)
according to the columns is a sequence of an even number m > 0 of distinct
points t2i+1 ∈ A and t2i+2 ∈ B for 0 ≤ i ≤ m

2 − 1 such that

(i) col(t2i+1) = col(t2i+2) and row(t2i+1) > row(t2i+2) for 0 ≤ i ≤ m
2 − 1;

(ii) row(t2i) = row(t2i+1) and col(t2i) < col(t2i+1) for 1 ≤ i ≤ m
2 − 1.

The definition of staircase according to the rows is obtained by exchanging the
words “row” by “column” and “A” by “B”.

A staircase can be interpreted geometrically. It is a rook path of alternating
points of A and B with end points t1 and tm. We refer to (t2i, t2i+1) as a
horizontal step and to (t2i+1, t2i+2) as a vertical step of T . Since A and B are
finite, every staircase has a finite number of points. A staircase which is not
a proper subset of another staircase is called a maximal staircase. Below we
will show that there is only one single maximal staircase if A = F2 \ F1 and
B = F1 \ F2. The points of A will be called white points, and the points of B
will be called black points.

4 Technical Lemmas

In the following we will speak about staircases in F1�F2, which implicitly means
that A = F2\F1 and B = F1\F2. Now, we are going to show that the symmetric
difference of F1 and F2 is a maximal staircase in F1�F2.

Remark 5. Notice that for every p∈F1�F2 there exists a staircase T =(t1,. . .,tm)
(possibly constituted by two points) such that p is an element of T . This can be
easily deduced from Remark 2.

Lemma 6. Any two maximal staircases in F1�F2 have the same starting point
and the same end point.

Proof. Let T1 = (t1, . . . , tm) and T2 = (s1, . . . , sn) be any two maximal stair-
cases in F1�F2. We are going to show that t1 = s1 and tm = sn. Since the −1
error occurs in exactly one row (say i), it follows that row(t1) = row(s1) = i.
If col(t1) �= col(s1), a black point, say q, exists in the ith row. By Remark 2 a
white point p exists such that col(p) = col(q) and row(p) > i. Since there is no
error in any row k > i this leads to an infinite sequence of points in F1�F2.

Analogously, since the +1 error occurs in exactly one row (say j) , we
have row(tm)= row(sm) = j, and col(tm) = col(sn) because otherwise (with
Remark 2) there is an infinite sequence of black and white points in F1�F2. �

96 A. Alpers and S. Brunetti

Remark 7. By Lemma 6 every maximal staircase starts in a white point t1 and
ends in a black point tm. So, there is exactly one white point in row(t1) and
col(t1) and one black point in row(tm) and col(tm). Moreover there is no black or
white point outside the rectangle which is made up of the rows between row(t1)
and row(tm), and the columns between col(t1) and row(tm).

Lemma 8. Any two maximal staircases in F1�F2 coincide.

Proof. Let T1 = (t1, . . . , tm) and T2 = (s1, . . . , sn) be any two maximal staircases
according to the columns in F1�F2. We are going to show that m = n and ti = si

for i = 1, . . . ,m. Since t1 = s1 there is no white point other than t1 in col(t1)
by Remark 7. It follows that exactly one black point lies on this column, that
is, t2 = s2. Analogously, we can conclude that tm−1 = sn−1. Consider now
T1 \ {t1, tm} and T2 \ {s1, sn}. They are two staircases according to the rows.
Proceeding as before, we conclude that t3 = s3 and tm−2 = sn−2. We repeat the
procedure alternatively on a staircase according to the rows and one according
to the columns until an empty set is achieved. So, ti = si for i = 1, . . . ,m. �

The previous lemmas prove the following proposition.

Proposition 9. The points of F1�F2 constitute a maximal staircase.

5 Bounds

In this section we give an upper bound for the number of points on any maximal
staircase, when we fix F1 but may vary F2. This gives a sharp bound on |F1�F2|,
since the maximal staircase contains exactly the points of F1�F2.

Let T = (t1, . . . , tm) denote this staircase, and let R = {1, . . . , a}×{1, . . . , b}
be the rectangle containing F1 having non-empty rows and columns. Clearly,
there is at most one point t1 of T outside of R, and for this point we have
1 ≤ col(t1) ≤ b, while all the other points of T are inside of R. Without loss of
generality we can assume that all points of F2 ⊆ {0, . . . , a} × {1, . . . , b}. So, we
have R1 ∈ Na

0 and C1 ∈ Nb
0.

Proposition 10. Let R1 ∈ Na
0 and C1 ∈ Nb

0 uniquely determine F1 ∈ F2. Then,

max
F2∈F2(F1)

|F1�F2| ≤ 2 min(a + 1, b).

Proof. Since F1�F2 forms a staircase T , it is immediately clear that an upper
bound for the symmetric difference can be obtained by counting two times the
number of vertical steps in T that, in turn, is less than b. But another bound
is given by adding 2 (for including t1 and tm) to two times the number of
horizontal steps. Since t1 is the only point that can lie outside R, we have
maxF2∈F2(F1) |F1�F2| ≤ min(2a + 2, 2b) = 2 min(a + 1, b). �

On the Stability of Reconstructing Lattice Sets 97

Proposition 11. Under the same hypothesis of Proposition 10, let l be the num-
ber of pairwise different row sums of F1. Then,

max
F2∈F2(F1)

|F1�F2| ≤ 2l.

Proof. Clearly, |T | equals two times the number of vertical steps in T . Since by
definition of staircase, row(t2i) = row(t2i+1) and col(t2i+2) = col(t2i+1) with
t2i, t2i+2 ∈ F1 \F2 and t2i+1 ∈ F2 \F1, we know that the number of points of F1
in row(t2i) is less than the number of points of F1 in row(t2i+2). So the maximal
number of vertical steps in any staircase T for F1 equals l. �

The next two lemmas provide lower bounds to the symmetric difference of
F1 and F2. These are used later on to show that the derived bounds are sharp.

Lemma 12. For every n ∈ N there exist F1, F2 ∈ F2 with |F1|= |F2|= 1
2n(n+1)

such that F1�F2 is a staircase with 2n points.

Proof. Taking the sets F1 = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1 − i} and
F2 = {(i, j) : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− i} ∪ {(i, n + 2 − i) | 2 ≤ i ≤ n + 1} one
can easily verify that the desired properties are fulfilled. �

Lemma 13. For every k, n ∈ N with 0 < k < n, there exist F1, F2 ∈ F2 with
|F1| = |F2| = 1

2n(n− 1) + k such that F1�F2 is a staircase with 2(n− 1) points.

Proof. We define (see Figure 1 (b))

S1 = {(i, j) : 1 ≤ i ≤ n − 2, 1 ≤ j ≤ n − i − 1}, S2 = {(i, n − i) : 1 ≤ i ≤ k},
B1 = {(i, n − i + 1) : 1 ≤ i ≤ k}, B2 ={(i, n − i) : k + 1 ≤ i ≤ n − 1},
W1 = {(i + 1, n − i + 1) : 1 ≤ i ≤ k}, W2 ={(i + 1, n − i) : k + 1 ≤ i ≤ n − 1}.

Then, F1 = S1 ∪ S2 ∪ B1 ∪ B2 and F2 = S1 ∪ S2 ∪ W1 ∪ W2 are sets with
|F1| = |F2| = 1

2n(n − 1) + k. It is easy to see that F1 has a triangular shape.
The points F1�F2 = B1 ∪ B2 ∪ W1 ∪ W2 form a staircase with 2(n − 1) points,
namely T = (p1, q2, p2, q2, . . . , pn−2, qn−2) with

pi =
{

(n + 1 − i, i) ∈ W2 : 1 ≤ i ≤ n − k − 1
(n − i + 1, i + 1) ∈ W1 : n − k ≤ i ≤ n − 1

and

qi =
{

(n − i, i) ∈ B2 : 1 ≤ i ≤ n − k − 1
(n − i, i + 1) ∈ B1 : n − k ≤ i ≤ n − 1. �

The next lemma is used in the following for bounding the number of different
consecutive row sums for a given set F1.

Lemma 14. For any n+j integers r1≥· · ·≥ rn+j ≥ 1 with n∈N, j∈N0 and

(i) j ≥ 1 and
∑n+j

i=1 ri = 1
2n(n + 1), or

(ii) j = 0 and
∑n+j

i=1 ri <
1
2n(n + 1)

there are at most n − 1 pairwise different ri’s.

98 A. Alpers and S. Brunetti

Proof. Suppose there are more than n − 1 pairwise different ri’s, which means
that in r1 ≥ · · · ≥ rn+j we have at least n − 1 times a strict inequality. This
implies ri ≥ n − i + rn+j for 1 ≤ i ≤ n − 1, and ri ≥ rn+j for n ≤ i ≤ n + j.
Summation yields the contradiction

n+j∑
i=1

ri ≥ (n + j)rn+j + n(n − 1) −
n−1∑
i=1

i ≥ n + j + n(n − 1) − 1
2
n(n − 1)

=
1
2
n(n + 1) + j. �

Lemma 15. Let F1 ∈ F2 with |F1| = 1
2n(n + 1) for an n ∈ N. Then, we have

maxF2∈F2(F1) |F1�F2| = 2n.

Proof. By Lemma 12 we have maxF2∈F2(F1) |F1�F2| ≥ 2n. If F1 has n+ j non-
empty rows, where j ≥ 1, then we have by Lemma 14 (i) at most n− 1 different
consecutive row sums. This leads only, by Proposition 11, to a staircase with at
most 2(n − 1) points. If F1 has less than n + 1 non-empty rows, then we again
conclude (by Proposition 10) that any staircase contains at most 2n points. �

Lemma 16. Let F1 ∈ F2 with 1
2n(n − 1) < |F1| < 1

2n(n + 1) for an n ∈ N.
Then, maxF2∈F2(F1) |F1�F2| = 2(n − 1).

Proof. Because of Lemma 13 we have maxF2∈F(F1) |F1�F2| ≥ 2(n − 1) for any
F1 with 1

2n(n− 1) < |F1| < 1
2n(n + 1). If F1 has n + j non-empty rows (j ≥ 0),

then we have, by Lemma 14 (ii), at most n−1 different row sums. Consequently,
by Proposition 11, this leads to a staircases with at most 2(n − 1) points. If F1
has less than n non-empty rows, then we again conclude (by Proposition 10)
that any staircase contains at most 2(n − 1) points. �

Now, we can summarize the results in the following theorem.

Theorem 17. For any two lattice directions and any two sets F1, F2 ∈ F2 with
the three properties

(i) F1 is uniquely determined by its X-rays along the two prescribed directions;
(ii) |F1| = |F2|;
(iii) ||R1 − R2||1 + ||C1 − C2||1 = 2,

we have:

|F1�F2| ≤
{

2n : if |F1| = 1
2n(n + 1) with n ∈ N

2(n − 1) : if 1
2n(n − 1) < |F1| < 1

2n(n + 1) with n ∈ N.

These bounds are sharp and imply

|F1�F2| ≤ 2

√
2|F1| +

1
4

− 1.

Proof. The first bound results from Lemma 15 and Lemma 16. The sharpness
of the bounds follows from the constructions given in Lemma 12 and Lemma 13.
The second bound follows when n is expressed in terms of |F1|. �

On the Stability of Reconstructing Lattice Sets 99

6 A Generalization to Lattice Sets with Invariant Points

In this section we study the stability problem under the weaker condition that
the X-rays do not uniquely determine the set F1, but we have some ”invariant”
points.

Let U(R1, C1) denote the class containing lattice sets having row and column
sum vectors R1 and C1. The class is normalized if R1 and C1 are monotone. If
R1 and C1 do not determine F1, then more than one set belongs to U(R1, C1).
In this context it is meaningful to study the case where U(R1, C1) has some
invariant points (these are points belonging to every set in U(R1, C1), or to none
of these sets).

It is well-known ([4]) that the normalized class U(R1, C1) has invariant points
if and only if the lattice sets in U(R1, C1) are of the form illustrated in Fig-
ure 2 (a). To be more precise, let R = {1, . . . , a} × {1, . . . , b} be the rectangle
containing F1; there exist pairwise disjoint subsets K1, . . . ,Kh ⊆ {1, . . . , a} and
pairwise disjoint subsets L1, . . . , Lh ⊆ {1, . . . , b} such that R \

⋃h
u=1 Ku × Lu

contains only invariant points. E.g., the black points in the Figure 2 (a) are in-
variant points belonging to every set in U(R1, C1) (also called 1-invariant points),
while the smaller dots indicate invariant points belonging to no set of U(R1, C1)
(also called 0-invariant points).

13 2

K1

K

2

3

K

LLL

(a) The typical form of the lattice
sets in U(R1, C1) with invariant
points

case (b)

case (d)case (c)

case (a)

(b) The four possible con-
figurations of Remark 22

Fig. 2. The illustrations used in Section 6

Remark 18. We assume that U(R1, C1) is normalized, |F1| = |F2|, and the X-ray
error is 2, so again we assume that the error occurs in two rows.

Let p be any point of F2 \ F1 and let q be any point of F1 \ F2. Clearly,
statement (a) and (b) of Remark 2 hold when p or q is not in

⋃h
u=1 Ku × Lu.

Remark 19. Consider a so called non-trivial component Ku×Lu, u ∈ {1, . . . , h},
and suppose that no error occurs on the lines intersecting this component.

100 A. Alpers and S. Brunetti

- Let q ∈ F1 \ F2 with row(q) ∈ Ku and col(q) �∈ Lu (implying that q is
an 1-invariant point). Then, there exists either one point p′ ∈ F2 \ F1 such
that row(p′) ∈ Ku and col(p′) �∈ Lu, or one point q′ ∈ F1 \ F2 such that
col(q′) ∈ Lu and row(q′) �∈ Ku. Otherwise we would obtain a contradiction
to the assumption about the shape of U(R1, C1), and the assumption that
there is no error in the rows and columns intersecting Ku × Lu.

- Similarly, let p ∈ F2 \F1 with row(p) ∈ Ku and col(p) �∈ Lu (meaning that p
is a 0-invariant point). Then, there exists either one point q′ ∈ F1 \ F2 such
that row(q′) ∈ Ku and col(q′) �∈ Lu, or one point p′ ∈ F2 \ F1 such that
col(p′) ∈ Lu and row(p′) �∈ Ku.

Suppose now that exactly one error occurs on a line intersecting Ku ×Lu. From
the assumptions about the shape of U(R1, C1) there follows:

- If the −1 error occurs, then there exists q′ ∈F1 \ F2 such that col(q′) ∈ Lu

and row(q′) �∈ Ku.
- If the +1 error occurs, then there exists p′ ∈ F2 \F1 such that row(p′) ∈ Ku

and col(p′) �∈ Lu.

From the previous remark there easily follows that, if not both rows i (the
row with −1 error) and j (the row with +1 error) intersect the same non-trivial
component, then we have i > j like in Lemma 3.

Definition 20. Let A,B ∈ F2 with A∩B = ∅. An (A,B)-switching component
(or a switching component for short) is a sequence of an even number m>0 of
distinct points t1,. . . ,tm such that t2i+1 ∈ A, t2i+2 ∈ B, col(t2i+1) = col(t2i+2)
for 0≤ i≤ m

2 −1, row(t2i+2)=row(t2i+3) for 0≤ i≤ m
2 −2, and row(t1)=row(tm).

Definition 21. Let R be a rectangle of size a × b containing the disjoint sets
A,B ∈ F2, and let K1, . . . ,Kh and L1, . . . , Lh be pairwise disjoint subsets of
{1, . . . , a} and {1, . . . , b}, respectively. An almost-staircase T = (t1, . . . , tm)
according to the columns in R is a sequence of an even number of m>0 distinct
points t2i+1 ∈ A, t2i+2 ∈ B, 0 ≤ i ≤ m

2 − 1 such that:

(i) For every i ∈ N0 with 0 ≤ i ≤ m
2 −1 it holds that col(t2i+1) = col(t2i+2) and,

if t2i+1 /∈
⋃h

u=1 Ku×Lu or t2i+2 /∈
⋃h

u=1Ku×Lu, then row(t2i+1) > row(t2i+2);
(ii) For every i∈N0 with 0 ≤ i ≤ m

2 −2 it holds that row(t2i+2) = row(t2i+3) and,
if t2i+2 /∈

⋃h
u=1 Ku×Lu or t2i+3 /∈

⋃h
u=1 Ku×Lu, then col(t2i+2) < col(t2i+3);

(iii)For every i ∈ N with 1 ≤ i ≤ m we have that ti is no member of an (A,B)-
switching component.

An almost-staircase is a staircase “almost everywhere” except that the prop-
erties in (i) and (ii) of Definition 4 are relaxed for points in components Ku×Lu.

Remark 22. If for a staircase T = (t1, . . . , tm) and a component Ku × Lu we
have {t1, . . . , tm} ∩ (Ku × Lu) = {ti, . . . , tj} with i > 1 and j < m then, by
definition of almost-staircases, the following cases can arise:

On the Stability of Reconstructing Lattice Sets 101

- If ti ∈B, then ti−1∈A, and (a) col(tj) = col(tj+1) implies tj+1 ∈ B, whereas
(b) row(tj) = row(tj+1) implies tj+1 ∈ A;

- If ti ∈ A, then ti−1 ∈ B, and (c) row(tj) = row(tj+1) implies tj+1 ∈ A,
whereas (d) col(tj) = col(tj+1) implies tj+1 ∈ B.

If i = 1, then either case (a) or (b) occurs, and if j = m, then either case (a)
or (d) occurs. Figure 2 (b) illustrates the four configurations: the three kinds of
rectangles represent Ku × Lu.

The rectangle of configuration (b) in Figure 2 (b) is colored black because the
number of black points inside is greater than the number of white points; rect-
angle of configuration (d) is colored white because the number of black points
inside is smaller than the number of white points, and finally rectangles of con-
figurations (a) and (c) have dotted edges because the number of white and black
points inside is the same. Again, a maximal almost-staircase is an almost stair-
case which is no proper subset of another almost-staircase.

Lemma 23. Any two maximal almost-staircases in F1�F2 have the same start-
ing point and the same end point.

Proof. We just stress the differences in the proof of Lemma 6 by using the same
notations. The case that remains to be considered is the following: row(t1) =
row(s1) = i ∈ Ku × Lu, col(t1) > col(s1), and a black point q on row i is in
Ku × Lu, and this point is not in a switching component (otherwise the error
would be too large). Since there is no error on the columns a white point exists
such that col(p) = col(q) but we cannot claim that row(p) > row(q). Anyway,
points alternate each other such that this sequence visits a black point to the left
of the rectangle or a white point to the bottom of the rectangle (leading to an
infinite sequence), or it infinitely alternates within Ku×Lu, or forms a switching
component with q. In all cases, this is a contradiction to the assumptions. �

Lemma 24. Any two maximal almost-staircases in F1�F2 coincide.

Proof. The proof follows like in Lemma 8. Indeed the case to analyze is that of
t1 = s1 ∈ Ku × Lu. One can easily show that if there is another white point in
col(t1), then it belongs to the same Ku ×Lu, so proving that t2 = s2. Similarly,
one deduces that tm−1 = sn−1. This allows to apply the procedure used in the
proof of Lemma 8. �

Again, every p ∈ F1�F2 (outside of a switching component) is contained in
an almost-staircase which is possibly constituted by two points (see Remark 19
and Remark 22). Because of the shape of F1 and F2 we also have that points in
a switching component can only lie in a single component Ku × Lu.

Let P := {p ∈ F1 ∪ F2 : p lies in an (F1, F2) − switching component} and
Tmax denote the maximal almost-staircase. Then, we can summarize the results
as follows.

102 A. Alpers and S. Brunetti

Theorem 25. Let Fi ∈ F2 be given, with row sum vector Ri and column sum
vector Ci, where i = 1, 2. Suppose the following properties are fulfilled

(i) U(R1, C1) has invariant points;
(ii) |F1| = |F2| and
(iii) ||R1 − R2||1 + ||C1 − C2||1 = 2.

Then, F1�F2 = Tmax ∪ P.

This theorem can be used to obtain a bound (similar to Section 5) which
depends only on

∑h
u=1 |Ku × Lu|, R1, and on C1.

7 Conclusion

In this paper we have answered a question which was left open in [3]. Under
the assumption of a small X-ray error and that the original set is uniquely
determined by its X-rays, we proved that the reconstruction of lattice sets from
two directions is a stable task. This is in contrast to its unstable counterparts,
i.e., to the case of reconstruction from more than two directions. Additionally,
we have shown that similar arguments can be carried over to the more general
case where the original set has invariant points.

References

[1] A. Alpers, Instability and Stability in Discrete Tomography, PhD thesis, Tech-
nische Universität München, Shaker Verlag, ISBN 3-8322-2355-X, (2003).

[2] A. Alpers, P. Gritzmann: On stability, error correction and noise compensation
in discrete tomography, in preparation

[3] A. Alpers, P. Gritzmann, L. Thorens: Stability and instability in discrete tomog-
raphy, LNCS 2243; Digital and Image Geometry, G. Bertrand, A. Imiya, R. Klette
(Eds.), (2002) 175-186.

[4] R.A. Brualdi: Matrices of zeros and ones with fixed row and column sum vectors,
Linear Algebra Appl. 33, (1980) 159-231.

[5] S. Brunetti, A. Daurat: Stability in discrete tomography: Linear programming,
additivity and convexity, LNCS 2886; Discrete Geometry for Computer Imagery,
I. Nyström, G. Sanniti di Baja, S. Svensson (Eds.), (2003) 398-407.

[6] S. Brunetti, A. Daurat: Stability in discrete tomography: Some positive results,
to appear in Discrete Appl. Math.

[7] R.M. Haber: Term rank of 0,1 matrices, Rend. Sem. Mat. Univ. Padova 30, (1960)
24-51.

[8] G.T. Herman, A. Kuba: Discrete tomography: Foundations, algorithms and ap-
plications, Birkhäuser, (1999)

[9] A. Kuba: Determination of the structure class A(R, S) of (0, 1)-matrices, Acta
Cybernet., 9-2, (1989) 121-132.

[10] G.G. Lorentz: A problem of plane measure, Amer. J. Math. 71, (1949) 417-426.
[11] S. Matej, A. Vardi, G.T. Herman, E. Vardi: Binary tomography using Gibbs pri-

ors, Discrete tomography: Foundations, algorithms and applications (chapter 8),
(1999)

On the Stability of Reconstructing Lattice Sets 103

[12] H.J. Ryser: Combinatorial properties of matrices of zeros and ones, Can. J. Math-
ematics 9, (1957) 371-377.

[13] H.J. Ryser: The term rank of a matrix, Canad. J. Math. 10, (1958) 57-65.
[14] H.J. Ryser: Matrices of zeros and ones, Bull. Amer. Math. 66, (1960) 442-464.
[15] C. Valenti: An experimental study of the stability problem in discrete tomography,

Electron. Notes Discrete Math. 12, (2003)

Reconstruction of Decomposable Discrete Sets
from Four Projections

Péter Balázs

Department of Informatics, University of Szeged,
Árpád tér 2, H-6720 Szeged, Hungary

pbalazs@inf.u-szeged.hu

Abstract. In this paper we introduce the class of decomposable discrete
sets and give a polynomial algorithm for reconstructing discrete sets of
this class from four projections. It is also shown that the class of decom-
posable discrete sets is more general than the class S ′

8 of hv-convex 8-
but not 4-connected discrete sets which was studied in [3]. As a conse-
quence we also get that the reconstruction from four projections in S ′

8

can be solved in O(mn) time.

Keywords: discrete tomography, reconstruction from projections, de-
composable discrete set

1 Introduction

One of the most frequently studied problems in the area of discrete tomogra-
phy [14, 15] is the reconstruction of 2-dimensional discrete sets from few (usu-
ally up to four) projections. Several theoretical questions are connected with
reconstruction such as existence and uniqueness (as a summary see [6, 9, 12]).
There are also reconstruction algorithms for different classes of discrete sets
(e.g., [4, 5, 7, 8, 11, 16, 17, 19]). However, the reconstruction problem is usually
underdetermined and the number of solutions can be very large. Moreover, the
reconstruction in certain classes can be NP-hard (see [21]). In order to keep
the reconstruction process tractable and to reduce the number of solutions a
commonly used technique is to suppose having some a priori information of the
set to be reconstructed. The most frequently used properties are connectedness,
directedness and some kind of discrete versions of the convexity. In this paper
we introduce a new property of discrete sets, namely the decomposability, and
study uniqueness and reconstruction problems in the class of discrete sets having
this property.

This article is structured as follows. First, the necessary definitions are intro-
duced in Section 2. In Section 3 we define the class of decomposable discrete sets
and give a polynomial algorithm for reconstructing sets belonging to this class
using four projections. In Section 4 we show that every 8- but not 4-connected
set is decomposable and applying the results of Section 3 we get an O(mn) algo-
rithm for the reconstruction problem in this class using four projections. Finally,
in Section 5 we conclude our results.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 104–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reconstruction of Decomposable Discrete Sets 105

2 Definitions and Notation

Let F̂ = (f̂ij)m×n be a binary matrix where m,n ≥ 1. Let F denote the set of
positions (i, j) where f̂ij = 1, i.e., F = {(i, j)|f̂ij = 1}. F is called a discrete
set, its elements are called points or positions. The k-th diagonal/antidiagonal
(k = 1, . . . ,m + n − 1) of F̂ are defined by the set Dk/Ak, respectively, where

Dk = {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} | i + (n − j) = k} , (1)

Ak = {(i, j) ∈ {1, . . . ,m} × {1, . . . , n} | i + j = k + 1} . (2)

Let F denote the class of discrete sets. For any discrete set F ∈ F we define
the functions H, V, D, and A as follows.
H : F −→ INm

0 , H(F) = H = (h1, . . . , hm), where

hi =
n∑

j=1

f̂ij , i = 1, . . . ,m , (3)

V : F −→ INn
0 , V(F) = V = (v1, . . . , vn), where

vj =
m∑

i=1

f̂ij , j = 1, . . . , n , (4)

D : F −→ INm+n−1
0 , D(F) = D = (d1, . . . , dm+n−1), where

dk =
∑

(i,j)∈Dk

f̂ij = |F ∩ Dk|, k = 1, . . . ,m + n − 1 , (5)

A : F −→ INm+n−1
0 , A(F) = A = (a1, . . . , am+n−1), where

ak =
∑

(i,j)∈Ak

f̂ij = |F ∩ Ak|, k = 1, . . . ,m + n − 1 . (6)

The vectors H, V , D and A are called the row, column, diagonal and antidiag-
onal projections of F , respectively (see Fig. 1). In the following we suppose that
hi > 0 and vj > 0 for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The cumulated hori-
zontal/vertical/diagonal/antidiagonal vectors are denoted by H̃ = (h̃1, . . . , h̃m),
Ṽ = (ṽ1, . . . , ṽn), D̃ = (d̃1, . . . , d̃m+n−1), and Ã = (ã1, . . . , ãm+n−1), respec-
tively, and defined by the following formulas (see Fig. 1)

h̃i =
i∑

l=1

hl, i = 1, . . . ,m , (7)

ṽj =
j∑

l=1

vl, j = 1, . . . , n , (8)

106 P. Balázs

F = 1
0
0

0
0

1
1
1
0

1 0 0 0 0
0000
0000
0001
1110

H

1
1
2
2
3

V

V

1 4 1 1 1 1

1 5 6 7 8
1
2
4
6
9

9

H
~

F

^

~

Fig. 1. An hv-convex 8- but not 4-connected discrete set F and the correspond-
ing binary matrix F̂ . The elements of F are marked with grey squares. The
projections of F are the vectors H, V , D = (0, 0, 0, 0, 2, 2, 3, 2, 0, 0), and A =
(0, 1, 2, 1, 1, 1, 0, 1, 1, 1). The cumulated vectors are H̃, Ṽ , D̃ = (0, 0, 0, 0, 2, 4, 7, 9, 9, 9),
and Ã = (0, 1, 3, 4, 5, 6, 6, 7, 8, 9)

d̃k =
k∑

l=1

dl, ãk =
k∑

l=1

al, k = 1, . . . ,m + n − 1 . (9)

Given a class G ⊆ F of discrete sets, we say that the discrete set F ∈ G is
unique in the class G (with respect to some projections) if there is no different
discrete set F ′ ∈ G with the same projections.

Two points P = (p1, p2) and Q = (q1, q2) in a discrete set F are said to
be 4-adjacent if |p1 − q1| + |p2 − q2| = 1. The points P and Q are said to be
8-adjacent if they are 4-adjacent or |p1 − q1| = 1 and |p2 − q2| = 1. The sequence
of distinct points P0, . . . , Pk is a 4/8-path from point P0 to point Pk in a discrete
set F if each point of the sequence is in F and Pl is 4/8-adjacent, respectively,
to Pl−1 for each l = 1, . . . , k. Two points are 4/8-connected in the discrete set
F if there is a 4/8-path, respectively, in F between them. A discrete set F is
4/8-connected if any two points in F are 4/8-connected, respectively, in F . The
4-connected set is also called as polyomino. The discrete set F is horizontally
convex/vertically convex (or shortly, h-convex/v-convex) if its rows/columns are
4-connected, respectively. The h- and v-convex sets are called hv-convex (see
Fig. 1). In this paper we are going to study the reconstruction problem from
four projections in several classes. Given a class G ⊆ F the problem can be
formulated as follows

4-Reconstruction(G).
Instance: Four non-negative vectors H ∈ INm, V ∈ INn, D ∈ INm+n−1

0
and A ∈ INm+n−1

0 .
Task: Construct a discrete set F ∈ G with H(F) = H, V(F) = V ,

D(F) = D and A(F) = A.

Reconstruction of Decomposable Discrete Sets 107

3 Reconstruction of Decomposable Discrete Sets

Let F be a discrete set. A maximal 4-connected subset of F is called a com-
ponent of F (e.g., in Fig. 1 there are two components: {(5, 4), (5, 5), (5, 6)}
and {(1, 2), (2, 2), (3, 1), (3, 2), (4, 2), (4, 3)}). Clearly, the components of F give
a (uniquely determined) partition of F . We will use the concept of smallest con-
taining discrete rectangle of F (SCDR) which corresponds to the notion of strong
convex hull of F (see [20]). Throughout this paper we always study discrete sets
having the following properties

(α) the components are uniquely reconstructible from their horizontal and ver-
tical projections in polynomial time, and

(β) the sets of the row/column indices of the components are disjoint, i.e., if
I × J ⊆ {1, . . . ,m}× {1, . . . , n} is the SCDR of a component of the discrete
set F , then Ī × J ∩ F = I × J̄ ∩ F = ∅ (where Ī = {1, . . . ,m} \ I and
J̄ = {1, . . . , n} \ J).

In fact, to satisfy property (α) we need to have some a priori information about
the components. For example, NW-directed hv-convex discrete sets can be used
as components since in this class property (α) is fulfilled [10].

The NorthWest-gluing (or shortly, NW-gluing) is an operator defined by

F2 −→ F : C × D → F, where F̂ =
(
Ĉ 0
0 D̂

)
. (10)

If C is a single component then we say that C is the NW-component of F. NE-,
SE-, SW-gluings and -components are defined similarly. We say that a discrete
set F consisting of k (k ≥ 2) components is decomposable if

(i) F satisfies properties (α) and (β), and
(ii) if k > 2 then we get F by gluing a single component to a decomposable

discrete set consisting of k − 1 components using one of the four gluing
operators.

As a straight consequence of the definition we get that every discrete set consist-
ing of three components and satisfying properties (α) and (β) is decomposable.
Figure 2 shows some decomposable and undecomposable configurations if the set
consists of four components. The class of decomposable discrete sets is denoted
by DEC. The following lemma shows an important property of the decompos-
able discrete sets.

Lemma 1. Let F ∈ DEC having more than two components, C be a component
of F with the SCDR I ×J . Let F ′ be the discrete set that we get by deleting rows
I × {1, . . . , n} and columns {1, . . . ,m} × J from F . Then F ′ ∈ DEC.

Proof. See [1].

On the basis of properties (α) and (β) in the reconstruction of a decomposable
discrete set it is sufficient to identify the SCDRs of the components. In order to
do this we first give a necessary condition.

108 P. Balázs

B3

B2

B4

B1

B3

B2

B4

B3

B2

B4

B3

B2

B4

B4 B4 B4 B4

B1 B1 B1

B1

B2

B3

B2

B1

B3

B1

B2

B3

B1

B2

B3

(a) (b) (c) (d)

(e) (g)(f) (h)

Fig. 2. Some decomposable (first row) and undecomposable (second row) configura-
tions of the components. The SCDRs of the components are denoted by B1, B2, B3,
and B4

Theorem 1. Let F ∈ DEC. If (i, j) is the bottom right position of the SCDR
of the NW-component of F then i is the smallest integer for which there exists
an integer j such that h̃i = ṽj = ãi+j−1 and ai+j = 0.

Proof. Define a set E as follows

E = ({1, . . . , i} × {j + 1, . . . , n}) ∪ ({i + 1, . . . ,m} × {1, . . . , j}) . (11)

If (i, j) is the bottom right position of the SCDR of the NW-component then
F ∩ E = ∅ (see Fig. 3), and so

h̃i =
i∑

t=1
ht = |F ∩ {1, . . . , i} × {1, . . . , n}| = |F ∩ {1, . . . , i} × {1, . . . , j}|

= |F ∩ {1, . . . ,m} × {1, . . . , j}| =
j∑

t=1
vt = ṽj . (12)

Furthermore, (F ∩ Ak) ∩ E ⊆ F ∩ E = ∅ for every k = 1, . . . ,m + n − 1 (see
again Fig. 3). Then, recalling that ak = |F ∩Ak| for k = 1, . . . , n+m− 1 we get
that

ãi+j−1 =
i+j−1∑
k=1

|F ∩ Ak| = |F ∩ {1, . . . , i} × {1, . . . , j}| = h̃i = ṽj . (13)

Moreover, Ai+j ⊆ E (see Fig. 3). Then, F ∩ Ai+j ⊆ F ∩ E = ∅ and we get that

ai+j = |F ∩ Ai+j | ≤ |F ∩ E| = 0 . (14)

Finally, assume that an integer i′ < i exists for which an integer j′ exists such
that h̃i′ = ṽj′ = ãi′+j′−1 and ai′+j′ = 0. Clearly, in this case j′ < j. Since

Reconstruction of Decomposable Discrete Sets 109

A i+j-1
A i+j

E

Fig. 3. The relations between the sets Ai+j−1, Ai+j and E. The position (i, j) is marked
with black square. The antidiagonals Ai+j−1 and Ai+j are marked with bold squares.
The set E is drawn with grey squares.

(i, j) is the bottom right position of the SCDR of the NW-component and every
component is a polyomino we get that the 1st, . . . , (i + j)-th coordinates of the
antidiagonal projection have to be of the form (0, . . . , 0, ak1 , . . . , ak2 , 0, . . . , 0),
where 1 ≤ k1 ≤ k2 < i + j and al �= 0 for every k1 ≤ l ≤ k2. But then ai′+j′ = 0
only if i′ + j′ < k1 or i′ + j′ > k2. If i′ + j′ < k1 then ãi′+j′−1 = 0. Since
the cumulated horizontal sums of a discrete set having nonzero rows are always
satisfy the relation

0 < h̃1 < h̃2 < . . . < h̃m (15)

we get that ãi′+j′−1 < h̃i′ which is a contradiction. Otherwise, i.e., if i′ + j′ > k2

then h̃i > h̃i′ (since i > i′ and (15) holds) and we get that ãi′+j′−1 = ãi+j−1 =
h̃i > h̃i′ which is, again, a contradiction. �

Similar theorems can be given for NE-, SE-, and SW-components. Before
giving a sufficient condition for finding the SCDR of a component of F we
introduce some further concepts. Let F, F ′ ∈ F such that F ′ \ F = {(p1, q1)}
and F \F ′ = {(p2, q2)}. If (p1+k, q1+k) = (p2, q2) for a k ∈ ZZ \{0} then we say
that we get F ′ by applying a slide on F . Similarly, if (p1 +k, q1−k) = (p2, q2) for
a k ∈ ZZ \{0} then we say that we get F ′ by applying an antislide on F . Clearly,
applying slides/antislides on a discrete set, the diagonal/antidiagonal projection
does not change, respectively. The following lemma shows an important relation
between polyominoes and decomposable discrete sets having the same horizontal,
vertical, and antidiagonal projections.

Lemma 2. Let P be a polyomino and F ∈ DEC such that H(P) = H(F),
V(P) = V(F), and A(P) = A(F). Then, the SCDRs of the components of F are
connected to each other with their bottom left and upper right corners.

Proof. See [1] for the proof based on the results of [13].

An analogue of Lemma 2 replacing the antidiagonal projection with the di-
agonal one can also be proven. In this case the components of the decomposable

110 P. Balázs

discrete set must be connected to each other with their bottom right and up-
per left corners. With the aid of the following theorem it is possible to test
whether the decomposable discrete set has a NW-component and if so then the
component itself can also be reconstructed.

Theorem 2. Let F ∈ DEC, H(F) = (h1, . . . , hm), V(F) = (v1, . . . , vn), and
A(F) = (a1, . . . , am+n−1). Moreover, let (i, j) be a position satisfying the neces-
sary conditions of Theorem 1. If a polyomino P exists according to the a priori
information which guarantees that property (α) is satisfied such that H(P) =
(h1, . . . , hi), V(P) = (v1, . . . , vj), and A(P) = (a1, . . . , ai+j−1) and there is no
P ′ ∈ DEC with H(P ′) = H(P), V(P ′) = V(P), and A(P ′) = A(P) such that
the SCDRs of P ′ are connected to each other with their bottom left and upper
right corners then P is the NW-component of F . If no such polyomino exists
then F does not have a NW-component.

Proof. Define a set by T =
⋃i+j−1

k=1 Ak and let Q′ = F ∩ T . Since A(P) =
(a1, . . . , ai+j−1) we get Q′ by applying some (possibly none) antislides on P .
Let Q be an arbitrary discrete set with the projections H(Q) = (hq

1, . . . , h
q
m),

V(Q) = (vq
1, . . . , v

q
n), and A(Q) = (aq

1, . . . , a
q
m+n−1) that we get by applying

some antislides on P . This time we allow that some of the coordinates of H(Q)
and V(Q) are zero. Clearly, aq

l = al for each l = 1, . . . , i + j − 1 and Q ⊆ T .
Moreover, for the horizontal and vertical projections of Q exactly one of the
following cases holds

(i) ∃ i′ ≤ i such that hq
i′ �= hi′ or ∃ j′ ≤ j such that vq

j′ �= vj′ ,
(ii) hq

i′ = hi′ for each i′ = 1, . . . , i and vq
j′ = vj′ for each j′ = 1, . . . , j.

Assume that Case (i) is true with hq
i′ �= hi′ for an i′ ≤ i. Then, there also exists

an i′′ ≤ i such that hq
i′′ > hi′′ or a j′′ ≤ j such that vq

j′′ > vj′′ . Clearly, in
this case there is no discrete set F ′ with the projections H(F ′) = (h1, . . . , hm)
and V(F ′) = (v1, . . . , vn) such that F ′ ∩ T = Q. Assuming that Case (i) is
true with vq

j′ �= vj′ for a j′ ≤ j we get the same in a similar way. Therefore
F can have the given projections if and only if for Q′ Case (ii) is true which
is possible only if Q′ ⊆ {1, . . . , i} × {1, . . . , j}. Since H(Q′) = (h1, . . . , hi) and
V(Q′) = (v1, . . . , vn) it follows that F can have the prescribed projections if and
only if F ∩E = ∅ where E is defined by (11). Then, {1, . . . , i}×{1, . . . , j} is the
SCDR of a set G ⊆ F consisting of one or more components of F . However, if G
consists of several components of F then G ∈ DEC based on Lemma 1 and the
SDCRs of the components of G are connected to each other with their bottom
left and upper right corners on the basis of Lemma 2 which is a contradiction.
Consequently, G is a simple polyomino. Since P satisfies the conditions which
guarantees that property (α) holds G = P and so the first part of the theorem is
proven. The second part of the theorem follows from the fact that the position
that satisfies the necessary conditions of Theorem 1 is uniquely determined. �

Similar theorems can be given for testing the existence of NE-, SE-, and
SW-components. We now can outline an algorithm for reconstructing decom-
posable discrete sets with given horizontal, vertical, diagonal, and antidiagonal
projections.

Reconstruction of Decomposable Discrete Sets 111

Algorithm 4-DEC

Input: the vectors H ∈ INm, V ∈ INn, D ∈ INm+n−1
0 , and A ∈ INm+n−1

0 .
Output: the uniquely determined decomposable discrete set with projections
H, V , D, and A or FAIL (if no such set exists).
1: repeat

try to reconstruct a NW-component by identifying its SCDR and using
the corresponding elements of the vectors H, V , and A;
if not succeed then try to reconstruct a NE-component by identifying its
SCDR and using the corresponding elements of the vectors H, V , and D;
if not succeed then try to reconstruct a SE-component by identifying its
SCDR and using the corresponding elements of the vectors H, V , and A;
if not succeed then try to reconstruct a SW-component by identifying its
SCDR and using the corresponding elements of the vectors H, V , and D;
if not succeed then break;
modify H, V , D, and A according to the reconstructed component and in
the following omit the reconstructed part of the discrete set;

until all the components are reconstructed;
2: if the diagonal/antidiagonal projection is not equal to the given vector D/A,

respectively then
{ let P1, . . . , Pl denote the polyominoes reconstructed in Step 1;
i = 0;
repeat

assuming that P1, . . . , Pi are components try to decompose further
components in order SW, SE, NE, NW similarly as in Step 1;
i = i + 1;

until all the components are reconstructed or i = l; }
3: if the diagonal/antidiagonal projection is not equal to the given vector D/A,

respectively then FAIL (no solution);

Turning to the analysis of the algorithm we can say the following

Theorem 3. Algorithm 4-DEC solves the problem 4-Reconstruction(DEC).
Assume that the reconstructed set consists of components F1, . . . , Fk and let Ci

denote the time complexity of reconstructing the component Fi (i = 1, . . . , k).
Then, the worst case time complexity of the algorithm is of k · max1≤i≤k Ci

which is polynomial. The solution is uniquely determined.

Proof. As a straight consequence of the algorithm we get that the reconstructed
set is decomposable and has the given projections. Assuming that the l-th
(l = 1, . . . , k) component to be reconstructed is a NW-component it takes
O(m + n) time to find the (uniquely determined) position which satisfies the
necessary conditions of Theorem 1. We do it simply by scanning the vectors
H̃ and Ṽ . In order to test whether this position is the bottom right position of
the SCDR of the NW-component we try to reconstruct this component based on
Theorem 2 which takes Cl time. The same is true if the l-th component is a NE-,
SE- or SW-component. In the worst case the component is a SW-component,

112 P. Balázs

i.e., we try to reconstruct the l-th component at most four times and so the
reconstruction complexity of Step 1 is max1≤i≤k Ci which is polynomial because
of property (α). Theorem 2 guarantees the existence of a NW-component only
when there is no decomposable discrete set with the same horizontal, vertical,
and antidiagonal projections such that the components are connected to each
other with their bottom left and upper right corners. Therefore it can occur
that we accept the reconstructed polyomino as a NW-component although the
decomposable discrete set to be reconstrcuted has no NW-component at all. The
same is true for NE-, SE-, and SW-components, too. These situations result that
the algorithm cannot reconstruct the decomposable discrete set with the given
projections in Step 1. However, it reconstructs some polyominoes P1, . . . , Pl such
that there exists an l′ ≤ l for which P1, . . . , Pl′−1 are components and Pl′ is not a
component of the decomposable discrete set. Then, the components F1, . . . , Fl′−1
are already reconstructed and the remaining components of the discrete set can
be reconstructed in reversed order in Step 2. If l′ is known then all the remaining
components can be reconstructed in Step 1. Since l′ is not known in Step 2 we
have to call Step 1 at most k times and so the reconstruction complexity of Step
2 is of k · max1≤i≤k Ci in the worst case. The uniqueness of the solution follows
from property (α). �

4 Reconstruction of hv-Convex 8- but Not 4-Connected
Discrete Sets from Four Projections

The class of hv-convex 8- but not 4-connected discrete sets (denoted by S ′
8) was

introduced in [2]. In the same paper the authors gave a reconstruction algorithm
in this class using the horizontal and vertical projections. This algorithm has
worst case time complexity of O(mn ·min{m,n}) and the solution is not always
uniquely determined. Then, in [3] it is shown that using also the diagonal and
antidiagonal projections the algorithm can be speeded up having complexity of
O(mn) and in this case uniqueness also holds. In the following we show that this
is a consequence of

Theorem 4. S ′
8 ⊆ DEC.

Proof. Let F ∈ S ′
8. Then, clearly, the number of components of F is at least

2. Since F is hv-convex the sets of the row/column indices of the components
consist of consecutive integers and they are disjoint. Then, property (β) is sat-
isfied. Moreover, on the basis of Theorem 5 in [3] and Theorem 3 in [18] the
components can be reconstructed uniquely from the horizontal and vertical pro-
jections in O(mn) time, i.e., property (α) also holds. Finally, the configuration
of the components can follow only two cases (see Theorem 2 in [3]). Namely, the
SCDRs of the components are connected to each other with their bottom right
and upper left or with their bottom left and upper right positions (see Fig. 4a
and 4b, respectively). Clearly, both configurations are decomposable. �

Then, applying Theorem 3 we get the following

Reconstruction of Decomposable Discrete Sets 113

B4

B2

B3

B2

(a)

B1

(b)

B1

B3

B4

Fig. 4. The two possible configurations of the components in the class S ′
8

Corollary 1. Algorithm 4-DEC solves the problem 4-Reconstruction(S ′
8) in

O(mn) time. The reconstructed set is uniquely determined.

5 Conclusions and Further Work

In this paper we have introduced a new class of discrete sets, the class of de-
composable discrete sets and we have given a reconstruction algorithm in this
class using four projections. It is shown that the algorithm has polynomial
time complexity. Then, it is proven that the class of hv-convex 8- but not 4-
connected sets is a subclass of DEC. As a consequence we got that the problem 4-
Reconstruction(S ′

8) can be solved in O(mn) time. Since the complexity of our
algorithm strongly depends on the fact that the components are uniquely deter-
mined by the horizontal and vertical projections it seems to be important to find
classes of discrete sets where the reconstruction problem can be solved uniquely.

It is shown that in some cases the discrete set can be decomposed along the
diagonal and antidiagonal projections to facilitate the reconstruction. However,
in some cases the decomposition into components is impossible. For example,
the configuration in Fig. 2e can be decomposed into two parts (one containing
B1 and B2, and the other containing B3 and B4) by the antidiagonal projection
but then, the two parts cannot be further decomposed into components since the
diagonal projections of the two parts are not independent. In some unfortunate
cases the components cannot be separated at all (see, e.g., Fig. 2g and 2h). If
the set is not decomposable then our algorithm simply FAILs without giving a
solution. It is an interesting question whether it could be decided in advance
if a discrete set is decomposable. Further investigation of the undecomposable
configurations is also needed.

Throughout the paper it was assumed that every coordinate of the horizontal
and vertical projections is nonzero, i.e., hi > 0 and vj > 0 for all i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}. However, the results can be generalized easily to handle
decomposable discrete sets where some of the coordinates of the horizontal or
vertical projections are zero. In our work we concentrated on discrete sets con-
sisting of components which satisfy some special properties (namely, properties
(α) and (β)). More work has to be done on the field whether assuming weaker
properties about the components the reconstruction process remains tractable.
Further work in this field can lead us towards designing efficient reconstruction
algorithms for important classes like the one of hv-convex sets.

114 P. Balázs

References

1. P. Balázs, Reconstruction of decomposable discrete sets from four projections,
Technical Report at the University of Szeged (2004)
http://www.inf.u-szeged.hu/~pbalazs/research/research.html

2. P. Balázs, E. Balogh, A. Kuba, A fast algorithm for reconstructing hv-convex 8-
connected but not 4-connected discrete sets, Lecture Notes in Computer Science
2886 (2003) 388-397.

3. P. Balázs, E. Balogh, A. Kuba, Reconstruction of 8-connected but not 4-connected
hv-convex discrete sets, Discrete Applied Mathematics, accepted.

4. E. Balogh, A. Kuba, Cs. Dévényi, A. Del Lungo, Comparison of algorithms for
reconstructing hv-convex discrete sets, Lin. Alg. and Its Appl. 339 (2001) 23–35.

5. E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, Reconstructing convex poly-
ominoes from horizontal and vertical projections, Theor. Comput. Sci. 155 (1996)
321–347.

6. R.A. Brualdi, Matrices of zeros and ones with fixed row and column sum vectors,
Lin. Algebra and Its Appl. 33 (1980) 159–231.

7. S. Brunetti, A. Daurat, Reconstruction of discrete sets from two or more X-rays in
any direction, Proceedings of the seventh International Workshop on Combinatorial
Image Analysis (2000) 241–258.

8. M. Chrobak, Ch. Dürr, Reconstructing hv-convex polyominoes from orthogonal
projections, Information Processing Letters 69(6) (1999) 283–289.

9. A. Daurat, Convexité dans le plan discret. Application à la tomographie, Thèse de
doctorat de l‘Université Paris 7 (2000)
http://llaic3.u-clermont1.fr/~daurat/these.html

10. A. Del Lungo, Polyominoes defined by two vectors, Theor. Comput. Sci. 127 (1994)
187–198.

11. A. Del Lungo, M. Nivat, R. Pinzani, The number of convex polyominoes recon-
structible from their orthogonal projections, Discrete Math. 157 (1996) 65–78.

12. R.J. Gardner, P. Gritzmann, Uniqueness and complexity in discrete tomography,
In [15] (1999) 85–113.

13. L. Hajdu, R. Tijdeman, Algebraic aspects of discrete tomography, Journal für die
reine und angewandte Mathematik 534 (2001) 119–128.

14. G.T. Herman, A. Kuba (Eds.), Discrete Tomography, Special Issue. Int. J. Imaging
Systems and Techn. 9 (1998) No. 2/3.

15. G.T. Herman, A. Kuba (Eds.), Discrete Tomography: Foundations, Algorithms and
Applications (Birkhäuser, Boston, 1999).

16. A. Kuba, The reconstruction of two-directionally connected binary patterns from
their two orthogonal projections, Comp. Vision, Graphics, and Image Proc. 27
(1984) 249–265.

17. A. Kuba, Reconstruction in different classes of 2D discrete sets, Lecture Notes on
Computer Sciences 1568 (1999) 153–163.

18. A. Kuba, E. Balogh, Reconstruction of convex 2D discrete sets in polynomial time,
Theor. Comput. Sci. 283 (2002) 223–242.

19. H.J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J.
Math. 9 (1957) 371–377.

20. P. Soille, From binary to grey scale convex hulls, Fundamenta Informaticae 41
(2000) 131–146.

21. G.W. Woeginger, The reconstruction of polyominoes from their orthogonal projec-
tions, Inform. Process. Lett. 77 (2001) 225–229.

A Tomographical Characterization of
L-Convex Polyominoes

Giusi Castiglione1, Andrea Frosini2, Antonio Restivo1, and Simone Rinaldi2

1 Università di Palermo, Dipartimento di Matematica e Applicazioni,
via Archirafi, 34 - 90123 Palermo, Italy

{giusi, restivo}@math.unipa.it.
2 Università di Siena, Dipartimento di Scienze Matematiche ed Informatiche,

Pian dei Mantellini, 44 - 53100 Siena, Italy
{frosini, rinaldi}@unisi.it.

Abstract. Our main purpose is to characterize the class of L-convex
polyominoes introduced in [3] by means of their horizontal and vertical
projections. The achieved results allow an answer to one of the most
relevant questions in tomography i.e. the uniqueness of discrete sets,
with respect to their horizontal and vertical projections. In this paper,
by giving a characterization of L-convex polyominoes, we investigate the
connection between uniqueness property and unimodality of vectors of
horizontal and vertical projections. In the last section we consider the
continuum environment; we extend the definition of L-convex set, and
we obtain some results analogous to those for the discrete case.

1 Definitions and Preliminaries

Let our environment be the integer lattice Z×Z. A discrete set is a finite subset
S of Z × Z considered up to translations.

Usually, a discrete set is represented by a binary matrix or by a set of cells
(unitary squares), as depicted in Fig. 1. In the sequel, we will use the latter
representation, and we number the rows and the columns of the set starting
from the upper left corner of the minimum rectangle containing it. We denote
by (i, j) the cell in the i-th row and j-th column of the rectangle.

1 1 1

1

1

1 1

1

1

1

1

1

11

0

0 0 0

0 0 0

0

00

0

0

0 0

0 0 0

0

0 0

0

0

Fig. 1. A finite set of Z
2, and its representation in terms of a binary matrix and a set

of cells

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 115–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 G. Castiglione et al.

P :1 P :2
P :

Fig. 2. The polyomino P contains the polyomino P1, but does not contain the poly-
omino P2. The shaded cells of P show the inclusion

In this paper we study a particular class of discrete sets, i.e. the well known
class of polyominoes (cf.[4]). A polyomino is defined as a finite union of cells
whose interior is connected. Given two polyominoes P and P ′, we say that P is
contained in P ′ if P ⊆ P ′ with respect to the standard set-inclusion (see Fig. 2).

A polyomino is said to be h-convex (resp. v-convex) if every its row (resp.
column) is connected. A polyomino is said to be hv-convex, or simply convex, if
it is both h-convex and v-convex (see Fig. 3).

For any two cells A and B in a polyomino, a path ΠAB , from A to B, is a
sequence (i1, j1), (i2, j2), ..., (ir, jr) of adjacent disjoint cells, with A = (i1, j1),
and B = (ir, jr). For each 1 ≤ k < r, we say that the two consecutive cells
(ik, jk), (ik+1, jk+1) form:

– an east step if ik+1 = ik + 1 and jk+1 = jk;
– a north step if ik+1 = hi and jk+1 = jk + 1;
– a west step if ik+1 = hi − 1 and jk+1 = jk;
– a south step if ik+1 = hi and jk+1 = jk − 1.

Finally, we define a path to be monotone if it is entirely made of only two of the
four types of steps defined above.

The cells in a convex polyomino satisfy a particular connection property that
involves the shape of the paths connecting any pair of them.

Proposition 1. A polyomino P is convex iff every pair of cells is connected by
a monotone path.

The property in Proposition 1, allows us to introduce a particular family of
convex polyominoes, called L-convex polyominoes, defined and studied in [3].

1.1 The Class of L-Convex Polyominoes

Let us consider a polyomino P . A path in P has a change of direction in the cell
(ik, jk), for 2 ≤ k ≤ r − 1, if

ik �= ik−1 ⇐⇒ jk+1 �= jk.

In [3] it is proposed a classification of convex polyominoes based on the num-
ber of changes of direction in the paths connecting any two cells of a polyomino.

A Tomographical Characterization of L-Convex Polyominoes 117

Fig. 3. The convex polyomino on the left is not L-convex, while the one on the right
is L-convex. For both the polyominoes two cells are highlighted, and a monotone path
which connects them and which contains the minimum number of possible changes of
direction, is depicted

c)b)a)

Fig. 4. In a) and b) we have crossing intersections among the rectangles, while the
intersection in c) is not crossing

More precisely, we call k-convex a convex polyomino such that every pair of its
cells can be connected by a monotone path with at most k changes of direction.
For k = 1 we have the class of L-convex polyominoes, i.e. those polyominoes
such that every pair of their cells can be connected by a path with at most one
change of direction (see Fig.3).

In the same paper it is given a nice characterization of L-convex polyominoes
that involves the following notion of maximal rectangle.

A rectangle, that we denote by [x, y], with x, y ∈ N \ {0}, is a rectangular
polyomino whose dimensions are x and y (x rows and y columns). We say [x, y]
to be maximal in P if

∀ [x′, y′], [x, y] ⊆ [x′, y′] ⊆ P ⇒ [x, y] = [x′, y′] .

Two rectangles [x, y] and [x′, y′] contained in P have a crossing intersection
if their intersection is a rectangle having as basis the smallest of the two bases,
and as height the smallest of the two heights, i.e.

[x, y] ∩ [x′, y′] = [min{x, x′},min{y, y′}] .

Figure 4 shows examples of crossing and non-crossing intersections.

Theorem 1. A convex polyomino is L-convex iff every pair of its maximal rect-
angles has crossing intersection.

118 G. Castiglione et al.

c

b
a P :

d

Fig. 5. A L-convex polyomino P obtained by one of the overlappings of the four com-
parable rectangles a, b, c and d having crossing intersection

From Theorem 1, it immediately follows that all the maximal rectangles of
a L-convex polyomino are distinct. The same result allows to characterize a
L-convex polyomino as one of the overlapping of its maximal rectangles.

Since the set of maximal rectangles can be partially ordered as follows:

[x1, y1] > [x2, y2] if x1 > x2 and y1 < y2 ,

then each finite overlapping of comparable rectangles such that any pair of
them has a crossing intersection, determines a L-convex polyomino (see Fig.5 for
an example).

1.2 Basic Notions of Discrete Tomography

To each discrete set S, we can associate two integer vectors H = (h1, . . . , hm)
and V = (v1, . . . , vn) such that, for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, hi and vj are the
number of cells of S which lie on row i and column j, respectively. The vectors
H and V are called the horizontal and vertical projections of S, respectively.
Given two vectors H and V , we will denote by U(H,V) the class of discrete sets
having H and V as projections.

A discrete set S is unique (with respect to H and V) if U(H,V) = {S}. In
such a case also H and V are said to be unique.

Fundamental problems of discrete tomography concern the retrieval of infor-
mation about some geometrical aspects (cf. [1], [2], [7]) of discrete sets, from the
knowledge of their projections (for a survey cf. [5]).

In general, the horizontal and vertical projections of a discrete set are not
sufficient to uniquely determine it (see Fig. 7), as it is known from [9], where
Ryser pointed out that a discrete set is unique if and only if it does not contain
particular configurations of points called switching components. Figure 6 shows
the two simplest of them, called elementary switching components, and defined
as follows: a discrete set S contains the elementary switching component a) [resp.
b)] if there exists two rows i and i′, and two columns j and j′ such that the cells
in positions (i, j), and (i′, j′) [resp. (i′, j), and (i, j′)] belong to S (represented
in the figure by filled squares), while the cells in positions (i′, j), and (i, j′)
[resp. (i, j), and (i′, j′)] do not belong to S (represented in the figure by dotted
squares).

A Tomographical Characterization of L-Convex Polyominoes 119

b)a)

i

i’

i

i’

j j’ j j’

Fig. 6. The two elementary switching components. The presence of one of them in a
discrete set assures its non-uniqueness

P : P :P : 21

Fig. 7. Three polyominoes belonging to the class U(H, V), with H = (1, 3, 3, 3, 3, 1)
and V = (2, 6, 4, 2)

Furthermore, Ryser defined an operator, called interchange and successively
switching (operator), which modifies a discrete set by changing one of its switch-
ing component, if it exists, into the other.

In Fig. 7, the discrete sets P1 and P2 are obtained from P by performing the
two highlighted switchings.

Clearly, switching does not modify the projections of a discrete set, which
consequently reveals to be non-unique (cf. [10]). The reverse of this property is
also true, as stated in the following

Theorem 2. (Ryser’s Theorem) A discrete set is non-unique (with respect to its
horizontal and vertical projections) if and only if it has a switching component.

2 A Characterization Theorem for L-Convex
Polyominoes

In this section we furnish a series of results that produce a characterization of
L-convex polyominoes in terms of horizontal and vertical projections.

Lemma 1. A L-convex polyomino P is uniquely determined by its horizontal
and vertical projections.

120 G. Castiglione et al.

Proof. Theorem 2 allows us to achieve the uniqueness of P by proving that it
does not contain any switching component. So, let us assume that there exists
a switching component involving the two cells A and B of P , in positions (i, j)
and (i′, j′), respectively, where i �= i′ and j �= j′. By definition of switching, the
two cells in positions (i, j′) and (i′, j) do not belong to P , and consequently a
monotone path ΠAB having at most one change of direction does not exist. This
fact contradicts the hypothesis of L-convexity of P . �

Lemma 2. Let j and j′ be two different columns of a L-convex polyomino P ,
such that vj ≤ vj′ . For each row i of P , if (i, j) ∈ P , then (i, j′) ∈ P .

Proof. Let us proceed by contradiction and assume that there exists a row i′ of
P such that (i′, j) ∈ P and (i′, j′) �∈ P . Since vj ≤ vj′ , there exists a row i′′ such
that (i′′, j) �∈ P and (i′′, j′) ∈ P . These four cells form a switching component,
a contradiction by Lemma 1. �

Obviously a result similar to that of Lemma 2 holds if vj > vj′ , and, further-
more, if we replace the two different columns of P with two of its rows.

We define an integer vector X = (x1, . . . , xk) to be unimodal, if there exists
0 ≤ i ≤ k, such that x1 ≤ x2 ≤ . . . ,≤ xi and xi ≥ xi+1 ≥ · · · ≥ xk.

Lemma 3. If P is a L-convex polyomino then its horizontal and vertical pro-
jections are unimodal.

Proof. Let P be a L-convex polyomino belonging to U(H,V), with H ∈ Nm and
V ∈ Nn. By Theorem 1, it follows that each element hi of H is the basis of a
maximal rectangle of P . Let us proceed by contradiction and assume H to be
non-unimodal, i.e. there exist 1 ≤ i < j < k ≤ m such that hj < hk and hj < hi.
The following three cases arise:

hi = hk: the cells of P lying on row i and row k belong to the same maximal
rectangle, so hj ≥ hi, a contradiction;

hi < hk: the two values hi and hj are the bases of two different maximal
rectangles. Since each pair of maximal rectangles has crossing intersection, then
hj ≥ hi, a contradiction;

hi > hk: analogous to the previous case.
Since each element vj of V , with j = 1, . . . ,m, is the height of a maximal

rectangle of P , a similar reasoning leads to prove that also V is unimodal. �

The properties stated in Lemmas 2 and 3 directly follow from the defini-
tion of L-convexity. A less intuitive result is the characterization of L-convex
polyominoes by means of the uniqueness and monotonicity of its projections.

Theorem 3. Let P ∈ U(H,V), with H ∈ Nm and V ∈ Nn.

H and V are unimodal
H and V are unique

}
⇔ P is a L-convex polyomino.

A Tomographical Characterization of L-Convex Polyominoes 121

Proof. (⇒) We prove by contradiction the h-convexity of P : let us assume that
there exist three cells (i, j) ∈ P , (i, j′) �∈ P and (i, j′′) ∈ P , with i < i′ < i′′.
The unimodality of V allows the following three cases:

vj ≥ vj′ ≥ vj′′ : Lemma 2 applied to columns j′′ and j′, implies that (i, j′) ∈
P , which is clearly a contradiction;

vj ≤ vj′ ≤ vj′′ : Lemma 2 applied to columns j and j′, implies that (i, j′) ∈ P ,
a contradiction;

vj ≤ vj′ and vj′ ≥ vj′′ : Lemma 2 applied or to columns j and j′, or to
columns j′′ and j′ implies that (i, j′) ∈ P , again a contradiction.

A similar reasoning leads to the v-convexity of P .
Finally, for any pair of cells (i, j) and (i′, j′) belonging to P , the uniqueness

of P implies that (i′, j) ∈ P or (i, j′) ∈ P , so the cells (i, j) and (i′, j′) can be
connected by a path having at most one change of direction. This determines
the connectedness and the L-convexity of P .

(⇐) The result follows from Lemmas 1 and 3. �

The following remark is a direct consequence of the proof of Theorem 3:

Remark 1. A convex discrete set is unique if and only if it is L-convex.

3 Extension to Measurable Plane Sets

In this section, we introduce the concept of L-convex plane set in order to extend
to the continuum the uniqueness results stated in Section 2.

In the case of generic measurable plane sets, G.G.Lorentz gave in [8] necessary
and sufficient conditions for a pair of projections to be respectively unique, non-
unique and consistent. These results were obtained by using analytic transforma-
tions of the projection functions. Further studies considered the same problem
from a geometrical point of view, with the aim of defining a switching theory
which translates in the continuum what was introduced for discrete sets. In
particular in [6], the authors introduced the notion of switching components in
the continuum, and stated a result similar to Theorem 2. Furthermore, they
furnished other nice characterizations of plane sets related to their geometrical
properties. In this section we will often rely on these works in order to support
our results.

So, let us start by recalling the following standard definitions: a set S of R2

is called h-convex (resp. v-convex) if, for each pair of points (x, y), (u, v) ∈ S,
with y = v (resp. x = u), the horizontal (resp. vertical) line segment which join
them is entirely contained in S. We call hv-convex the plane sets that are both
h-convex and v-convex.

Furthermore, a step polygon is a polygonal curve consisting of horizontal and
vertical line segments and having no self-intersections. A step polygon joining
two distinct points (x, y), (u, v) ∈ R2 can be represented as a finite sequence of
vertices (x0, y0), (x1, y1), ..., (xk, yk) such that each vertex is connected by a line
segment to the next one, (x0, y0) = (x, y), and (xk, yk) = (u, v). To our purpose,
line segments are the continuum counterpart of the four kinds of steps defined

122 G. Castiglione et al.

a) b)

Fig. 8. a) a hv-convex plane set and a monotone step polygon lying inside it; b) a L-
convex plane set, and two of its cells joined with a three vertex monotone step polygon

in Section 1 for the discrete lattice, and so they can be classified as north, south,
east and west segments. A step polygon is called monotone if it is composed of
at most two different kinds of these segments.

Hence, we have the following natural translation of Proposition 1 to hv-convex
plane sets:

Proposition 2. A plane set S is hv-convex iff every pair of points in S can be
joined by a monotone step polygon lying in S.

Now we can finally define a plane set S to be L-convex if each pair of its
points can be joined by a monotone step polygon with at most three vertices,
and entirely contained in S (see Fig.8).

3.1 A Characterization Theorem for L-Convex Plane Sets

In this paragraph, the reader will encounter some basic definitions together with
the continuum counterparts of the results stated in Section 2

A function f(x), defined in the interval [a, b] ⊂ R, is unimodal if there exists
x ∈ [a, b] (called mode) such that f(x) increases from a to x and decreases from
x to b.

Let S ⊆ R2 be a measurable set such that λ2(S) < ∞ (λ2 being the two
dimensional Lebesgue measure), and let f(x, y) be its characteristic function.
Using notations and definitions from [6], we call horizontal projection of S the
function

fx(y) =
∫ ∞

−∞
f(x, y)dx (1)

and vertical projection of S the function

fy(x) =
∫ ∞

−∞
f(x, y)dy . (2)

A Tomographical Characterization of L-Convex Polyominoes 123

These functions exist almost everywhere on R and they are integrable (Fu-
bini’s theorem).

In [6], it is introduced a notion of switching components in the continuum
which naturally extends the one for discrete sets.

In particular, let t,u be two real numbers. The sets

S(t, 0) = {(x, y)|(x − t, y) ∈ S}

S(0, u) = {(x, y)|(x, y − u) ∈ S}

are called horizontal and vertical translation of S, respectively.
We say that S admits a switching component if there exist four sets A,B,C,D

and two real numbers t and u such that B ∪ C ⊆ S, A ∪ D ∩ S = ∅, and such
that B = A(t,0), C = A(0,u) and D = A(t,u).

We have that if S admits a switching component, then S is not uniquely
determined by its projections, in fact the set

S′ = (S − (B ∪ C)) ∪ (A ∪ D)

is different from S, and it has its same horizontal and vertical projections.
The existence of a switching component is also a necessary condition to guar-

antee the non-uniqueness of the set S (see [6] for a proof), so we have the fol-
lowing result, analogous to Lemma 1:

Theorem 4. A measurable plane set having finite measure is non-uniquely de-
termined by its projections iff it has a switching component.

Finally, L-convexity of a plane set causes the existence of a mode both in its
horizontal and in its vertical projections:

Lemma 4. If a plane set is L-convex, then both its horizontal and its vertical
projections are unimodal.

The proof can be simple inferred from that of Lemma 3. As a consequence
we can obtain, for the continuous case, the same characterization result as for
discrete sets:

Theorem 5. Let fx and fy be projection functions defined in R2 of a plane set
S. It holds that

fx and fy are unimodal
fx and fy are unique

}
⇔ S is L-convex .

A last remark is needed: in [6], a different and interesting characterization of
unique plane sets is provided. Let S be a measurable plane set of finite measure.
The rectangle X × Y is measurably inscribed (briefly m-inscribed) in S if

X × Y ⊆ S and X × Y ⊆ S .

124 G. Castiglione et al.

Fig. 9. Two m-inscribed rectangles inside a L-convex plane set

The set S is m-inscribable if it is the union of m-inscribed rectangles. We can
immediately argue that the presence of m-inscribed rectangles inside the set S
is similar to the presence of maximal rectangles inside an L-convex polyomino.

This idea is strengthened by the fact that, using Theorem 4, in [6] it is proved
the following

Theorem 6. A measurable plane set having finite measure is uniquely deter-
mined by its projection functions iff it is m-inscribable.

We want to observe that the notion of crossing intersection in the contin-
uum environment, leads to the equivalence between L-convex plane sets and
m-inscribable plane sets. In fact, at the same time, we obtain a nice generaliza-
tion of Theorem 1 and an uniqueness result.

Theorem 7. Let S be a measurable plane set. It holds that S is L-convex iff S
is m-inscribable by rectangles with crossing intersection.

4 Conclusions and Further Work

In this work we have proposed a characterization of L-convex sets in terms of
features relevant to discrete tomography. In particular, we observed that each
L-convex set is unique with respect to its horizontal and vertical projections,
and that both the projections show a unimodal behavior. The characterization
is achieved after showing that these two properties are also sufficient to obtain
a L-convex set.

Finally, the last section of the paper concerns the natural extension of our
main result to the continuum environment.

We would like to point out some open questions: one can ask wether similar
tomographical characterizations can be proved when generalizing the notion of
L-convexity by taking into consideration two or more directions different from
(or possibly strictly including) the horizontal and the vertical ones.

A Tomographical Characterization of L-Convex Polyominoes 125

Furthermore, we could consider the extension of the notion of L-convex poly-
omino to the three dimensional lattice. In fact, it seems not so trivial to keep
maintaining the crucial equivalence between the characterizations of L-convexity
by means of monotone path and of maximal rectangles in such environment.

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155 (1996)
321–347

2. Brualdi, R.A.: Matrices of zeros and ones with fixed row and column sum vectors.
Lin. Algebra and Its Applications 33, (1980) 159–231

3. Castiglione, G., Restivo, A.: Reconstruction of L-convex Polyominoes. Electron.
Notes in Discrete Math. 12 Elsevier Science (2003)

4. Golomb, S.W.: Polyominoes. Scribner, New York (1965)
5. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms

and Applications, Birkhauser Boston, Cambridge, MA (1999)
6. Kuba, A., Volčič, A.: Characterization of measurable plane sets which are recon-

structable from their two projections. Inverse Problems 4 (1988) 513–527
7. Kuba, A., Balogh, E.: Reconstruction of convex 2D discrete sets in polynomial

time Theoret. Comput. Sci. 283 (2002) 223–242
8. Lorentz, G.G.: A problem of plane measure. Am. J. Math. 71 (1949) 417–426
9. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canad. J.

Math. 9 (1957) 371–377
10. Shliferstein, A.R., Chien, Y.T.: Switching components and the ambiguity problem

in the reconstruction of pictures from their projections. Pattern Recognition, 10
(1978) 327–340

Computerized Tomography with Digital Lines
and Linear Programming

Fabien Feschet and Yan G rard

LLAIC - IUT Clermont-Ferrand,
Campus des Cézeaux,

63172 Aubière Cedex - France
{feschet, gerard}@llaic.u-clermont1.fr

Abstract. We present a new method of computerized tomography based
on linear programming. The approach is based on three main ideas: cov-
ering the set of pixels by digital lines, introducing a variable of maximal
error in the linear constraints and adding in the objective function an
entropy term.

1 Introduction

Since the invention of the first X-rays scanner by G.N. Hounsfield and A. McCor-
mack in the beginning of the seventies, computerized tomography has become
an industrial, medical and mathematical stake. The principle of this technol-
ogy is to reconstruct an image from X-rays. This purpose requires to solve a
mathematical problem belonging to the family of inverse problems: compute the
inverse of the radon transform. A solution is given by the formula of the Fourier
slice theorem [1] but this result belongs to the framework of “continuous” math-
ematics whereas the technology of the measurements of the X-rays provides only
discrete data. The computation of the image with the Fourier slice theorem re-
quires to know the X-rays for all the angles going from 0 to 360 degrees, which is
of course not possible. The camera can only provide X-rays according to a finite
panel of directions. This reason and the fact that the captors of the camera pro-
vide digital data with a finite precision make rational to consider the problem
in a discrete framework (Fig 1).

The most popular methods of computerized tomography are the filtered back-
projection algorithm and its variant called the convolution back-projection al-
gorithm. Since the seventies, the back-projections methods have been chosen
in computerized tomography in preference to iterative [2, 3, 4, 5] reconstruction
techniques. These algebraic approaches [6] have however recently come to the
lead in both frameworks of PET imagery and discrete tomography. Discrete to-
mography deals with the reconstruction of binary images, namely lattice sets
instead of grey-level images (see [7] for details). One of the characteristics of dis-
crete tomography is the small number of directions which makes the Fourier an-
alytical tools inappropriate. In this particular framework, the algebraic approach
and especially linear programming has provided a lot of interesting results ([8],

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 126–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

é

Computerized Tomography with Digital Lines and Linear Programming 127

Fig. 1. Moving the camera in four positions with a panel of directions of angles 0, 90,
150 and 210 around the object provides four vectors (ai)1≤i≤I , (bi)1≤i≤I , (ci)1≤i≤I

and (di)1≤i≤I called X-rays. The purpose of tomography is to obtain from the X-rays
a significative grey-level image of the object

[9], [10], [11], [12]). This paper is deeply inspired by these earlier works. Its pur-
pose is a presentation of a new method of computerized tomography based on
linear programming. The choice of reconstructing grey levels images instead of
lattice sets avoids the main difficulty met by this kind of methods in discrete
tomography. Then we can focus on the generation of the linear constraints and
of the objective function. They are based in the new method on three elementary
ideas:

– We cover the set of the pixels by digital lines (a digital line is a subset of
Z2 characterized by a double-inequality μ ≤ ax + by < μ + δ [13]) instead
of using Diophantine straight lines or weights equal to the lengths of the
intersection between lines and pixels.

– We introduce in the problem a variable of maximal error that we denote
h. The linear constraints of the linear programming instance come from the
definition of h: each difference between the given X-rays and the X-rays of
the image should belong to the interval between the maximal error and its
opposite. The choice of the objective function is made in order to minimize
h.

– We add in the objective function an entropy factor as done in [10].

Next section 2 is focused on the literature of linear programming and tomog-
raphy. The purpose of the third section 3 is a detailed description of our new
method while section 4 provides experimental results.

2 Tomography and Linear Programming

According to [8], the idea to use linear programming in the framework of discrete
tomography came to P. Fishburn, P. Schwander, L. Shepp, and R. Vanderbei

128 F. Feschet and Y. G rard

after a talk of A. Kuba at the first mini-symposium on discrete tomography
(DIMACS, 1994, Rutgers University) about his joint work with G. Herman and
R. Aharoni. It was the first intrusion of linear programming theory in discrete
tomography and probably in the whole domain of tomography. Since ten years,
this idea has get on well by providing a lot of interesting results going from al-
gorithms to more theoretical questions as for instance uniqueness [8] or stability
of the solutions [11]. The basic principle is to relax the binary constraint on the
image for computing with linear programming a grey-level image. The instance
is made from the constraint on the grey level to belong to an interval while some
partial sums according to lines are equal with the given X-rays [8]. This first
formulation searches only exact solutions with the disadvantage that approxi-
mations are not supported (if only one data is modified, the feasibility of the
instance is not guaranteed). It makes this approach inappropriate to real data.
Then P. Gritzmann, S. de Vries, and M. Wiegelmann have relaxed the equalities
between the partial sums and the X-rays: whether they consider that the sums
are less than the X-rays and they maximize the sum of the grey levels (method
Best-Inner-Fit), or they consider that the sums are greater than the X-rays and
they minimize the sum of the grey levels (method Best-Outer-Fit) [9]. This ap-
proach can deal with real data because any instance is feasible. Next point was
the introduction by S. Weber, C. Schnörr, and J. Hornegger of an entropy term
in the objective function. This technic requires auxiliary variables with an ex-
pensive increase in the number of constraints. The computation is much more
expensive in time but it provides results that the human eyes should find more
obvious and less noisy than the ones obtained without entropy. It is the reason
why we kept this term for reconstructing grey levels images.

Finally, we mention other works trying to use sophisticated tools of convex
optimization [5] or Difference Convex programming [14].

3 New Method

3.1 Digital Lines

To project a continuous image, real lines are used and the projected value is
the integral of density along the line of projection. When dealing with discrete
images, projections may be modeled with different models. First, it is possible
to consider the intersection between the digital grid and rational lines [12, 9].
In this case, a line is a set of integer points nearly always disconnected. The
value of the projection is the sum of the values of the points of the intersection.
Second, it is possible to consider real lines and to discretize the intersection of
the lines with the discrete grid. More precisely, each point of the discrete grid
might be modeled as a unit square. Then the intersection of a line with each
square is an interval whose length is used as a weight associated to the integer
points situated at the center of the square. This is done for instance in [14].

None of the above methods are satisfactory because discrete projections are
computed with disconnected sets in the first case, and weights introduce a mix

é

Computerized Tomography with Digital Lines and Linear Programming 129

between the discrete space Zn and the real space Rn. We propose another strat-
egy which is a purely discrete approach. Our projection operator is based on
arithmetical lines.

The μ parameter controls the translation of any given arithmetical line over
the grid whose size is the size of the image to be reconstructed. If the width
parameter δ is greater than max(|a|, |b|) then the arithmetical lines are connected
and hence projections are computed from connected subsets of the image. In the
experiments, we have chosen to use digital lines with δ = max(|a|, |b|) (these
digital lines are called “naive”). The translation parameter μ has also a deep
impact on the projection operator. Indeed, it must be increased or decreased by
δ to ensure that consecutive lines do not intersect. Hence smaller values force
the consecutive lines to overlap, which makes the projection operator closer
to the real process of acquisition used in computerized tomography. As a by-
product, it is possible to deal with image having an imported resolution while
keeping limited resolutions for the projections. This is also achieved thanks to
the parameters δ and μ of arithmetical lines.

3.2 Linear Programming

As previously described in the paper, discrete tomography can be algebraically
reduced to a problem of the form

Ax = b (1)

However, the matrix A is rarely invertible. Hence, the previous system cannot
be solved algebraically. To build an approximate solution, we introduce the error
term: e = Ax− b. Ideally e = 0 but since this never happens, we try to minimize
e. Minimization corresponds in fact to the minimization of the norm ‖e‖ of e
for some norm ‖.‖ which can be the L1, L2 or any Lp norm or the L∞ norm.
L2 norm leads to a mean-square approximation of the solution whereas the L∞
norm controls only the worse term of the approximation. Hence, we bound e by
h1l and −h1l, where 1l is the constant vector with all components equal to one,
and we minimize h. It is known [15] that L∞ norm problem might be solved by
linear programming. More precisely, to minimize the L∞ error, it is sufficient to
solve the following problem ⎧⎨⎩

min h
such that
−h1l ≤ Ax − b ≤ h1l

(2)

This linear programming problem can be solved by any available linear program-
ming solver. We have chosen the program soplex [16].

Approximation of the computerized tomography reconstruction problem with
linear programming is an interesting approach but lacks of topological con-
straints [10].

130

3.3 Entropic Regularization

To solve this problem, regularization constraints must be added to the linear
programming approach. In [10], the following strategy was used. Some variables
z(j,k) were added for each position (j, k) where j and k are 4-neighbors in the
grid containing the image. Then, z(j,k) is forced to be lower than the absolute
value of the difference between the values at position j and k. Moreover, each
density value is searched in the continuous interval [0, 1].

We have adopted another strategy to test the influence of an entropic term
onto the reconstruction. First if we want to reconstruct images with g grey levels,
we have forced all variables in the continuous interval [0, g − 1]. Second, let us
consider a position (m,n) in the grid. x(m,n) denotes the unknown density value
at position (m,n). We introduce two variables, u(m,n) and v(m,n) and we add the
constraints : u(m,n) ≤ min(x(m,n), x(m+1,n)) and v(m,n) ≤ min(x(m,n), x(m,n+1)).
Obviously, our entropic term is not symmetric whereas the previous one of Weber
et al [10] was. This might result in privileging high values.

The final problem to solve becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min h − K

⎛⎝ ∑
(m,n)

u(m,n) + v(m,n)

⎞⎠
such that

−h1l ≤ Ax − b ≤ h1l

u(m,n) ≤ min
(
x(m,n), x(m+1,n)

)
, ∀ (m,n)

v(m,n) ≤ min
(
x(m,n), x(m,n+1)

)
, ∀ (m,n)

0 ≤ x ≤ (g − 1)1l

(3)

K is a constant used to control the influence of the topological constraints versus
the minimization of h.

4 Experiments

We present in this section some experiments to illustrate the quality of the re-
construction method. Despite the fact that the method was designed to deal with
grey level images, we have applied it successfully to black and white image usu-
ally encountered in classical discrete tomography. The method has been tested
on two types of simulated images. One image was used to test the influence of
the constant K parameter and the other image, closed to real images acquired
in practice, was used to study the influence of the number of directions in the
reconstruction process.

For each test, the method was the following. Starting with the resolution
of the reconstructed image, we have generated the list of constraints using non

F. Feschet and Y. G rardé

Computerized Tomography with Digital Lines and Linear Programming 131

any special parameters. The output of soplex was converted to an image by
rounding, since the variables were forced to be in the interval of allowed grey
values.

4.1 B W ests

We start with a black and white test (see Fig. 2). K was fixed to 0.001. No
difference was constated between the two images. When considering real values,
the output of soplex was either 0 or 255, so no rounding was in fact added to
the process. It must be noticed that the reconstruction uses 8 directions: (1, 0),
(0, 1), (1, 1), (1,−1), (1, 2), (2, 1), (1,−2) and (2,−1).

A second test (see Fig. 3) was done on an imperfect black and white image.
We have used the same K value and the same projections than for the previous
experiments. Due to noise, some grey levels appears inside the objects which is
in accordance to what was expected since noise perturbates the projections.

We now illustrate the influence of the constant K on the reconstruction pro-
cess. The image in Fig. 3 was reconstructed with K = 0.001.In Fig. 4, we present

Fig. 2. (left) Original Image (right) Reconstructed Image

Fig. 3. (left) Original Noisy Image (right) Reconstructed Noisy Image

thetic images. The linear programming problem was solved by soplex without

and T

overlapping naive lines. Projections were computed free of error using the syn-

132

Fig. 4. (left) K = 0.01 (middle) K = 0.007 (right) K = 0.0001

the reconstruction obtained for K = 0.01, K = 0.007 and K = 0.0001. When K
has a too high value, the topological constraints are stronger than the constraint
on h. Hence, this forces to have regions with regular grey level even if objects
inside the image are not well reconstructed. When K decreases, the regularity of
the grey levels appears inside the objects but when K is very small, the influence
of the second term becomes neglectable and thus peaks of grey level appear. All
reconstructions were done with the given eight directions.

4.2 Grey Level Tests

We have also tested the method on a synthetic image which has simply been
constructed by adding grey levels inside the objects of the black and white noise
free image. We still used 8 directions and K was fixed to 0.001. Results are given
in Fig. 5. Images look similar even if they are not. The only difference is in the
grey level regularity. The effect of the topological constraints was to regularize
variations of grey levels in the reconstructed image. Visually, this effect was
not detected first. When zooming both images (see Fig. 6), the effect of the

Fig. 5. (left) Synthetic grey level image (middle) Reconstruction with K = 0.001
(right) Reconstruction with K = 0.0

F. Feschet and Y. G rardé

Computerized Tomography with Digital Lines and Linear Programming 133

Fig. 6. (left) Original image (right) Reconstructed image

topological constraints becomes clearer in the variations of grey levels in the
reconstructed images.

In Fig. 5, we provide the result obtained when K is null. Hence, the linear
program only corresponds to the minimization of h, that is the L∞ norm. As
it can be seen, the solution is not acceptable since the reconstructed grey levels
have no meaning at all. Minimizing only the error on the projections does not
permit to reconstruct the grey levels inside the image.

4.3 Influence of the Number of Directions

We now carry on our analysis with a more realistic synthetic image by the anal-
ysis of the influence of the number of directions on the quality of reconstruction,
see Fig. 7. We have used at most 16 directions by adding the following direc-
tions to the previous ones: (1, 4), (4, 1), (2, 3), (3, 2), (1,−4), (4,−1), (2,−3) and
(3,−2). The experiments were performed by taking the first four values of the
8 directions given earlier in the paper, then by taking all previous 8 directions
and finally the sixteen directions.

As it can be seen, the influence of the directions is certainly not neglectable.
K was fixed to a constant value K = 0.001 and this explains the regularity of
the grey levels. With four directions, it was nearly impossible to reconstruct a
good image. However, a careful analysis of the images shows that the result is
not so bad since high and low values of grey levels correspond inside the object of
the original position of extremal values. It is clear however, that the information
given by the four projections were insufficient. With eight direction, the result
is better. It is also better localized. This image can be sufficient in practice but
is not perfect. The area which is totally missing is the hole between the two
objects. Eight projections is insufficient to separate the objects where it was
sufficient to reconstruct nearly well the interior grey values of the objects. When
using sixteen directions, separation of the objects appears as well as a perfect
localization of grey level extrema. This result is totally coherent with what was
expected. More projections can be added but it is clear that visually sixteen are
sufficient. Since reducing the number of directions is a challenging problem, it
seems that our method does succeed well in this task.

134

Fig. 7. In order, original image, reconstructed with 4, 8 and 16 directions

5 Conclusion

We have presented in this paper a promising method for reconstructing grey
level images in computerized tomography. Based on linear programming and
digital lines, this method has a pure discrete nature. It was successfully tested on
synthetic images and seems also to perform well on black and white images. We
believe that this method can be a good starting point for constructing efficient
and reliable reconstruction method. All experiments were done on 64 × 64 images
but is virtually not limited. Times of computations approach one hour with
soplex at this time but the solution is nearly obtained in 20 minutes. Computing
time compatible with clinical available time is a challenging problem that must
be addressed in future works.

References

1. Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE
Press (1988)

2. Herman, G., Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6
(1976) 273–274

3. Gordon, R., Herman, G.: Reconstruction of pictures from their projections. Com-
munication of the ACM 14 (1971) 759–768

4. Gordon, R.: A tutorial on ART (Algebraic Reconstruction Techniques). IEEE
Transactions on Nuclear Science NS-21 (1974) 31–43

F. Feschet and Y. G rardé

Computerized Tomography with Digital Lines and Linear Programming 135

5. Ben-Tal, A., Margalit, T., Nemirovski, A.: The ordered subsets mirror descent
optimization method with applications to tomography. SIAM J. Optimization 12
(2001) 79–108

6. Aharoni, R., Herman, G., Kuba, A.: Binary vectors partially determined by linear
equation systems. Discrete Mathematics 171 (1997) 1–16

7. Kuba, A., Herman, G., eds.: Discrete Tomography: Foundations, Algorithms and
Applications. Birkhaüser (1999)

8. Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.: The discrete radon trans-
form and its approximate inversion via linear programming. Discrete Applied
Math. 75 (1997) 39–61

9. Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from
discrete X-rays. SIAM J. Optimization 11 (2000) 522–546

10. Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary
tomography with smoothness priors. In: Int. Workshop on Combinatorial Image
Analysis IWCIA’03. Volume 12 of Electronic Notes in Discrete Math., Elsevier
(2003)

11. Brunetti, S., Daurat, A.: Stability in discrete tomography: Linear programming,
additivity and convexity. In: 11th Discrete Geometry and Computer Imagery.
Volume 2886 of LNCS., Springer-Verlag (2003) 398–408

12. Hajdu, L., Tijdeman, R.: An algorithm for discrete tomography. Linear Algebra
and Appl. 339 (2001) 147–169

13. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique.
Thèse d’état, Université ULP - Strasbourg (1991)

14. Weber, S., T. Schüle, C.S., Hornegger, J.: Discrete tomography by convex-concave
regularization and d.c. programming. Technical report, Mannheim University
(2003)

15. Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley and Sons
(1986)

16. Wunderling, R.: Paralleler und Objektorientierter Simplex-Algorithmus. PhD
thesis, ZIB TR 96-09, Berlin (1996)

A Discrete Modulo N Projective Radon
Transform for N × N Images

Andrew Kingston and Imants Svalbe

Centre for X-ray Physics and Imaging,
School of Physics and Materials Engineering,

Monash University, VIC 3800, AUS
{Andrew.Kingston, Imants.Svalbe}@spme.monash.edu.au

Abstract. This paper presents a Discrete Radon Transform (DRT) based
on congruent mathematics that applies to N × N arrays where N ∈ N.
This definition incorporates and is a natural extension of the more re-
stricted cases of the finite Radon transform [1] where N must be prime,
the discrete periodic Radon transform [2] where N must be a power of 2,
and the DRT over pn [3], where N must be a power of a single prime. The
DRT exactly and invertibly maps a 2-D image to a set of 1-D projections
of length N . Projections are found as the sum of the pixels centred on
a parallel set of discrete lines. The image is assumed to be periodic and
these lines wrap around the array under modulo N arithmetic. Properties
of the continuous Radon transform are preserved in the DRT; a discrete
form of the Fourier slice theorem applies, as does the convolution prop-
erty. A formula is given to find the projection set required to be exactly
invertible for arrays with N any composite number, as well as a means
to determine the level of redundancy in sampling that is introduced on
such composite arrays.

1 Introduction

This paper presents a discrete projective transform for N × N arrays of image
data where N ∈ N. The motivation for this work is to remove the current
restrictions on array size N of such transforms to be a power of a prime.

The Radon transform maps a 2-D function f(x, y) to projection space r(ρ, θ)
as the integral of f along the line y = tan θx + ρ/ cos θ. A projection is a set of
all parallel line integrals at some angle θ. It was first defined by Johan Radon
in 1917, however applications in tomography and image processing were not
fully realised until the advent of computers. As the transform is predominantly
implemented on discrete data sets, a discrete version of the Radon transform
that minimises the need for interpolation is required. The Radon transform has
no 1-D analogue, so defining discrete projection sets is not a trivial task and
there have been many proposed formalisms.

A general algebraic definition for the discrete form of the Radon transform
was presented by Beylkin in 1987 [4]. A specific class of Beylkin’s definition,
termed the Finite Radon Transform (FRT), was defined by Matus and Flusser in

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 136–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Discrete Modulo N Projective Radon Transform 137

Fig. 1. Examples of discrete lines on N × N grids. Black pixels lie on the centre of the
wrapped lines, the values of these pixels are summed to give the value of one element
in the transform. (a) Pixels on x ≡ 4y + 7 (mod 31) sum to give R4(7). N is prime
here so only one element on each row and column is sampled by a discrete wrapped
line. (b) Pixels on y ≡ 0x + 7 (mod 31) sum to give R⊥

0 (7). (c) Pixels on y ≡ 6x + t

(mod 32) sum to give R⊥
3 (7), i.e., s = 3. N is now composite and the gradient 2s has

a common factor with N , each row and column is no longer uniquely sampled

1993 [1]. This transform is an exact and invertible projective mapping, requiring
only additive operations. This contrasts with the projections of the general DRT
in [4] which require an algebraic solution for the inversion process. The FRT
applies to square arrays of prime size, p× p. A discrete form of both the Fourier
slice theorem and convolution property of the continuous transform hold [1].
Thus the transformation and inversion can also be achieved very efficiently via
the 2-D discrete Fourier transform of the function. These properties of the FRT
make it an attractive tool to transform and interpret discrete data [5, 6].

An image defined on the 2-D array, I(x, y), is mapped to a set of 1-D pro-
jections of length p. The discrete FRT projections are found as a set of parallel
discrete line sums with intercepts t. There are p + 1 projections in total, p pro-
jections Rm(t) for 0 ≤ m < p, and one “perpendicular” projection, R⊥

0 (t). Rm(t)
is defined as the sum of pixel values centred on the discrete lines x ≡ my + t
(mod p), while R⊥

0 (t) is found as the sum of all pixel values centred on the line
y ≡ 0x + t (mod p). The transform is then defined as

Rm(t) =
∑p−1

y=0 I(〈my + t〉p, y) for 0 ≤ m < p,

R⊥
0 (t) =

∑p−1
x=0 I(x, t),

(1)

where 〈x〉η denotes x (mod η). An example of these discrete lines for p = 31 is
presented in Fig. 1a and 1b.

The FRT formalism was extended by Hsung, Lun and Siu in 1996 to apply
to square arrays of size 2n for any positive integer n [2]. This version, termed
the Discrete Periodic Radon Transform (DPRT), makes the transform more
conducive to image processing, which commonly utilises images of size 2n for
computational efficiency. The DPRT has projections Rm(t), as defined above,
for 0 ≤ m < N = 2n. However, since the array size is not prime, the image
size N now has factors other than N ≡ 0 (mod N). Additional “perpendicular”

138 A. Kingston and I. Svalbe

projections are required as R⊥
s (t) for 0 ≤ s < N/2, which are discrete line sums

along y ≡ 2sx + t (mod N). An example of these discrete lines for N = 32 is
presented in Fig. 1c. Including all these discrete projections represents I(x, y)
exactly in the transform space. The DPRT is then defined as

Rm(t) =
∑N−1

y=0 I(〈my + t〉N , y) for 0 ≤ m < N,

R⊥
s (t) =

∑N−1
x=0 I(x, 〈2sx + t〉N) for 0 ≤ s < N

2 .
(2)

The DPRT is a redundant representation of I(x, y) as it has N(1 + 1/2)
projections of length N . A non-redundant form of the DPRT with orthogonal
bases was presented by Lun and Hsung and Shen in 2003 [7], it is termed the
Orthogonal DPRT (ODPRT).

The formalism for the DRT applied to arrays of size pn × pn is a natural
extension of the DPRT and was developed in [3]. Projections are defined as for
the DPRT, with p replacing 2 in (2). This is a redundant transform but requires
only N(1 + 1/p) projections of length N . A non-redundant form of this DRT,
with orthogonal bases, was also presented in [3].

The above DRTs are all restricted to apply to square arrays with dimensions
based on a single prime. Should the DRT be required of an array of arbitrary
size M ×N , the image must be padded with zeroes to a square array with min-
imum size being the smallest pn ≥ sup{M,N}. Padding arrays adds redundant
information and unwanted computational complexity. This paper extends the
FRT (over p), the DPRT (over 2n) and the DRT (over pn) to apply to square
arrays of any composite size N = pn1

1 pn2
2 pn3

3 . . ., where pi is prime and ni is any
positive integer giving the prime decomposition of N . This definition is referred
to in this paper as the DRT over N . A DRT for non-square arrays is the subject
of ongoing research.

Section 2 establishes the set of projections that are required for an exact
and invertible DRT and provides a method to obtain that set. This leads to
the definition for the DRT over N ∈ N in section 3. A discrete form of the
Fourier slice theorem which applies to this DRT and the related convolution
property is also explained in this section. The inversion process for exact image
reconstruction from composite array projections is presented in section 4.

2 Projection Sets for Invertible Mappings

For the FRT, each projection, m, is generated by lines with gradient m, however
tan−1(1/m) is not necessarily the best way to define the angle of the projection.
It is defined here as the angle, θm, which provides the smallest translation be-
tween adjacent sampled pixels of the discrete line. Due to the assumption that
the image is periodic, The sample pattern for each discrete line x ≡ my+ t (mod
p) produces an infinite 2-D lattice with basis vectors {m, 1} and {0, p} (example
depicted in Fig. 2b). Identifying the angle of the shortest vector between ele-
ments of this lattice is equivalent to finding the projection angle. The design of
efficient algorithms to find the shortest length vectors in lattices has received

A Discrete Modulo N Projective Radon Transform 139

Fig. 2. Example of discrete line sums for p = 29, m = 9 and t = 0. Black pixels
are those summed as a periodic discrete line (a) x ≡ 9y + 0 (mod 29). (b) Lattice
basis {9, 1} and {29, 0} generates the sampling pattern of this periodic discrete line.
(c) Shortest vector in lattice, {xm, ym} = {−2, 3} at rational projection angle, θm =
tan−1(ym/xm) = 123.7◦

considerable attention. For example, Rote showed that any shortest vector can
be determined very efficiently through finding the reduced basis for 2D lattices
[8]. This shortest vector is denoted {xm, ym}. The projection angle is then de-
fined as θm = tan−1(ym/xm) (see Fig. 2c). Each projection, m, has a unique
rational angle. These fractions are irreducible and form a subset of the Farey
sequence [9].

The lattice can be generated by {0, p} and/or {p, 0}, along with any other
vector in the lattice {m, 1}, {2m, 2}, . . ., {(p − 1)m, p − 1}, reduced modulo p.
These vectors are equivalent for all parallel lines in a projection, regardless of the
translate, t. Therefore each vector specifies an entire projection. Let Θp be the
set of these vectors that define the projection set for a p × p array. Θp contains
{m, 1} (or any equivalent basis vector) for 0 ≤ m < p and {1, 0}.

The pixels sampled by each discrete line with t = 0 correspond to the p + 1
unique cyclic subgroups of order p in the group Zp × Zp under addition. Each
subgroup contains the identity (0, 0) and, since p is prime, each subgroup con-
tains p− 1 unique elements. These elements also uniquely sample each row and
column of the image, (see the example in Fig. 1a). Therefore there must be p+1
subgroups to contain all p2 elements, as (p+1)(p− 1)+1 = p2. Let Υ (N) repre-
sent the number of discrete lines in the projection set for the DRT of an N ×N
array. It can be seen Υ (p) = p + 1 = p(1 + 1/p) where p is prime. Υ (N) also
gives the number of unique cyclic subgroups of order N in the group ZN × ZN

under addition.
For the DPRT, the additional “perpendicular” discrete lines y ≡ 2sx + t

(mod 2n) are necessary, since N = 2n has factors so each pixel is not necessarily
contained in a unique cyclic subgroup. Here Θ2n contains {m, 1} for 0 ≤ m < 2n

and {1, 2s} for 0 ≤ s < 2n−1. There are N +N/2 cyclic subgroups of order N in
the group ZN ×ZN under addition when N = 2n. There are also cyclic subgroups
of order less than N , however it is unnecessary to include discrete lines resulting
from these, as each one is entirely contained within a cyclic subgroup of order

140 A. Kingston and I. Svalbe

N . Therefore Υ (2n) = 2n + 2n−1 = 2n(1 + 1/2). Similarly for the DRT over
pn, Θpn contains {m, 1} for 0 ≤ m < pn and {1, ps} for 0 ≤ s < pn−1 with
Υ (pn) = pn + pn−1 = pn(1 + 1/p).

Define the discrete lines for the DRT over square arrays of composite size as
ax ≡ by + t (mod N). ΘN then contains a number of vectors {b, a}. How many
of these are there to ensure the transform is invertible and how are they found?

A function f(n) is said to be multiplicative if gcd(m,n) = 1 implies that
f(mn) = f(m)f(n) [10]. We can show that Υ (N) is multiplicative and can then
define

Υ (N) = N
∏
p|N

(1 + 1/p). (3)

Suppose that gcd(m,n) = 1 and Θm contains {bi, ai}m for 0 ≤ i < Υ (m)
which gives the complete projection set for an m × m array and Θn contains
{di, ci}n for 0 ≤ i < Υ (n) which gives the complete projection set for an n × n
array. Then nΘm + mΘn gives the projection set for the mn × mn array which
will have Υ (m)Υ (n) discrete lines.

If n{b1, a1}m + m{d1, c1}n ≡ n{b2, a2}m + m{d2, c2}n (mod mn)
then n{b1, a1}m ≡ n{b2, a2}m (mod m)
and so {b1, a1}m ≡ {b2, a2}m (mod m),
similarly {d1, c1}n ≡ {d2, c2}n (mod n).

So all the new discrete lines defined are incongruent (mod mn) and form the
complete projection set for mn×mn. The projection set for a composite N can
be found via the projection sets for all the primes making up N . Below is an
example demonstrating how to obtain the projection set for N = 6 from the sets
for the two primes that make up 6, N = 2 and N = 3:

Given
Θ2 = {1, 0}, {0, 1}, {1, 1}.
Θ3 = {1, 0}, {0, 1}, {1, 1}, {2, 1}.

Θ6 = 2Θ3 + 3Θ2, i.e.,

+ {1, 0} {0, 1} {1, 1} {2, 1} ×2
{1, 0} {5, 0} {3, 2} {5, 2} {1, 2}
{0, 1} {2, 3} {0, 5} {2, 5} {4, 5}
{1, 1} {5, 3} {3, 5} {5, 5} {1, 5}
×3

This property is the underlying basis for generating the DRT for an arbitrary
composite array size N .

3 DRT Formalism

3.1 Definition

Denote each element of the DRT as Rb,a(t) which is found as the sum of all pixels
in I(x, y) such that ax ≡ by+ t (mod N). Here for the FRT and DPRT Rm(t) =

A Discrete Modulo N Projective Radon Transform 141

Rm,1(t) and R⊥
s (t) = R1,2s(t). The DRT over square arrays of composite size,

N × N , can be defined as

Rb,a(t) =
N−1∑
x=0

N−1∑
y=0

I(x, y)δ〈ax − by − t〉N for {b, a} ∈ ΘN . (4)

where δ〈x〉η is 1 when x ≡ 0 (mod η) and 0 otherwise and ΘN is as defined in
section 2.

3.2 Properties

An important property of the continuous RT is the Fourier slice theorem which
states that the 1-D Fourier transform (FT) of a continuous projection at angle
θ is equivalent to a central radial slice through the 2-D FT of the original ob-
ject/function at the angle θ⊥ = θ+π/2 [11]. A discrete form of this Fourier slice
theorem can be demonstrated for the DRT. Denote R̂b,a(u) as the 1-D DFT of
Rb,a(t) for {b, a} ∈ ΘN , then

R̂b,a(u) =
N−1∑
t=0

Rb,a(t)e−i2πut/N

=
N−1∑
t=0

N−1∑
x=0

N−1∑
y=0

I(x, y)e−i2πut/Nδ〈ax − by − t〉N

=
N−1∑
x=0

N−1∑
y=0

I(x, y)e−i2π(axu−byu)/N

= Î(au,−bu), (5)

where Î(u, v) is the 2-D discrete FT (DFT) of I(x, y). This gives a wrapped
discrete line through the origin of Fourier space, −bu ≡ av (mod N), which is
perpendicular to the discrete line of projection as the product of the gradients
is -1.

The DRT of an image can be obtained in O(NΥ (N) logN) operations by
utilising this property. Î(u, v), the 2-D DFT of the image I(x, y), can be ob-
tained in O(N2 logN) operations. Each of the Υ (N) projections of length N
can be obtained as the inverse 1-D DFT of the corresponding discrete slices in
O(N logN) operations.

Another useful property of the continuous RT, which results from the Fourier
slice theorem, is the convolution property. A discrete form of this property is also
conserved in the DRT. Assume the function F (x, y) on an N × N array is to
be determined from the N × N function G(x, y) and L × M function H(x,y),
0 < L,M ≤ N , by the 2D convolution

F (x, y) =
L−1∑
α=0

M−1∑
β=0

G(〈x − α〉N , 〈y − β〉N)H(α, β). (6)

142 A. Kingston and I. Svalbe

This operation can be performed on one projection at a time in the DRT. Denote
the DRT over N of η(x, y) as Rη

b,a(t). The value of F (x, y) can be found through
the DRT of G(x, y) and H(x, y) as

RF
b,a(t) =

N−1∑
k=0

RG
b,a(〈t − k〉N)RH

b,a(k). (7)

This shows the 2-D convolution of arrays can be performed in DRT space
as a set of 1-D circular convolutions of each discrete projection. This reduces
the computational complexity of 2-D problems such as filtering or matching,
analogous to the applications for the FRT and DPRT outlined in [2].

4 DRT Inversion

The inverse transform (or image reconstruction from projections) for the DRT
is achieved via a form of back-projection similar to the process of projection (4).
To recover the value of the original function at pixel (i, j), the discrete line sums
in each of the Υ (N) projections that contain this pixel are summed. This incor-
porates the value of the pixel (i, j) Υ (N) times and all other pixels at least once
(depending on the degree of compositeness of N). The next section investigates
how to determine the degree of over-representation, and the following section
establishes a method to correct for it, allowing the exact value for the pixel (i, j)
to be recovered.

4.1 Sampling Function, υN(x, y)

Let υN (x, y) represent the number of times a pixel (x, y) is sampled by all discrete
lines in the N × N DRT that include the origin. This function shows the over-
representation of each pixel after back-projection when reconstructing the origin.
This over-representation must be accounted for in reconstructing the original
function. Since the array is congruent (mod N), the over-representation for any
pixel (x, y) from the back-projection to reconstruct a pixel (i, j) can be found as
υN (x − i, y − j), so it is sufficient to investigate reconstructing the origin only.

For the FRT case, where N = p, a prime, υp(x, y) = 1 for all pixels except the
origin which is Υ (N) or p + 1. An example of this for p = 7 is shown in Fig. 3a.
This can be written as υp(x, y) = d

∏
d=p(1+1/p) where d = gcd(x, y, p). For the

DPRT case, where N = 2n, it was shown in [2] that υ2n(x, y) = gcd(x, y, 2n) for
all pixels except the origin which is Υ (N) = 2n(1 + 1/2). An example of this for
N = 8 is shown in Fig. 3b. This can be written as υ2n(x, y) = d

∏
d=2n(1 + 1/2)

where d = gcd(x, y, 2n). Similarly, for the DRT over pn, it was shown in [3] that
υpn(x, y) = d

∏
d=pn(1 + 1/p) where d = gcd(x, y, pn). An example of this for

N = 9 is shown in Fig. 3c.
Suppose that gcd(m,n) = 1 where {ai, bi} for 0 ≤ i < υm(x, y) is the set

of solutions ax + by ≡ 0 (mod m) and {ci, di} for 0 ≤ i < υn(x, y) is the set
of solutions cx + dy ≡ 0 (mod n). Then n{a, b} + m{c, d} gives the solution

A Discrete Modulo N Projective Radon Transform 143

Fig. 3. Examples of the sampling function for (a) FRT over p, υ7(x, y) (b) DPRT over
2n, υ8(x, y) (c) DRT over pn, υ9(x, y)

set (mod mn) and there are υm(x, y)υn(x, y) discrete lines. The proof that each
new discrete line is unique is identical to that for Υ (N) in section 2, so all the
new solutions defined are incongruent (mod mn) and form the complete set of
solutions. Therefore we can say υN (x, y) is multiplicative and define

υN (x, y) = d
∏

p|d�
N
d

(1 + 1/p) where d = gcd(x, y,N). (8)

where p | d � N
d denotes some prime p that divides d but does not divide N/d.

Below is an example for finding υ6(2, 4) as υ3(2, 4)υ2(2, 4), a graphical represen-
tation of the discrete lines is presented in Fig. 4.

Given
{
υ2(2, 4) = υ2(0, 0) = 3 as {1, 0}, {0, 1}, {1, 1}.
υ3(2, 4) = υ3(2, 1) = 1 as {2, 1}.

υ6(2, 4) = 3 found as
+ {1, 0} {0, 1} {1, 1} ×3

{2, 1} {1, 2} {4, 5} {1, 5}
×2

so the lines

⎧⎨⎩
2x ≡ 1y (mod 6)
5x ≡ 4y (mod 6)
5x ≡ y (mod 6)

all include pixel (i, j)

From the discrete Fourier slice theorem, given in section 3.2, υn defined about
the origin of the image also gives the over-representation of spatial frequencies
in the 2-D discrete Fourier transform, Î(u, v) as υN (v,−u) = υN (u, v).

4.2 Correcting for υN(x, y) in Back- rojection

For the FRT, υp(x, y) is Υ (p) = p + 1 at the origin and 1 at all other (x, y).
The sum of all discrete line sums containing a specific pixel (i, j),[i.e., R1,0(j)
and Rm,1〈i−mj〉p for 0 ≤ m < p] gives the sum of the entire image, Isum, with
I(i, j) an additional p times, (see example in Fig. 3b). The over-representation
can be corrected for by subtracting the sum of the image, Isum and dividing the
result by p. So the image is recovered from its FRT as

I(x, y) =
1
p

(
p−1∑
m=0

Rm,1〈x − ym〉p + R1,0(y) − Isum

)
, (9)

P

144 A. Kingston and I. Svalbe

Fig. 4. Depiction of discrete lines presented in υ6(2, 4) example. Note in 6 × 6 case
the basis vector {2, 1} generates the same lattice as {4, 5} and the basis vector {−1, 1}
generates the same lattice as {1, 5}, those used in this figure are simply the reduced
bases

Fig. 5. (a) υ2(x, y) (b) All discrete lines in Θ2 on the 8 × 8 array, with intercept 0
(mod 2) yields υ2(x, y) replicated (mod 2) (c) υ4(x, y) (d) All discrete lines in Θ4 on
the 8 × 8 array, with intercept 0 (mod 4) yields υ4(x, y) replicated (mod 4)

where Isum can be obtained as the sum of all discrete line sums from any one
projection, i.e.,

∑p−1
t=0 Rq,1(t) for any 0 ≤ q < p.

For the DPRT and DRT over pn, υp(x, y) is Υ (pn) at the origin and gcd(x, y, pn)
at all other (x, y). This gives an over-representation at each resolution p × p,
p2 × p2, . . ., pn−1 × pn−1. To correct for this, an important property to note is
that the sampling achieved by taking the projection set for a pk × pk array, Θpk ,

for all discrete line sums t (mod pk), (i.e.,
∑pn−k−1

j=0 Rb,a(t + jpk) for all {b, a}
in Θpk) yields the sampling pattern for pk, i.e., υpk(x, y) replicated (mod pk) in
the x and y directions. An example of this for pk = 2 and pk = 4 within an 8×8
array is depicted in Fig. 5b and 5d.

This can be used to correct for υpn(x, y) at resolution pk × pk. υpn(x, y)
can therefore be corrected through a multi-resolutional process; each step, ξi,
corrects for the over-representation described above at resolution N/pi × N/pi.
The inversion process is given as

I(x, y) = ξ0(x, y) −
n−1∑
i=1

(p − 1)
pi

ξi(x, y) − p

N2 Isum, (10)

where ξi = 1
N

⎡⎢⎣ ∑ N

pi −1
m=0

∑pi−1
j=0 Rm,1

(
〈x − my〉 N

pi
+ j N

pi

)
+
∑ N

pi+1 −1

s=0
∑pi−1

j=0 R1,s

(
〈y − psx〉 N

pi
+ j N

pi

)
⎤⎥⎦.

A Discrete Modulo N Projective Radon Transform 145

(a) (b)

Fig. 6. Top left corner of (a) υ45(x, y) (b) All discrete lines in Θ9 on the 45× 45 array,
with intercept 0 (mod 9) yields υ9(x, y) replicated (mod 9)

The inversion process for composite N is a natural extension of that for
N = pn. It is also undertaken by correcting for the over-representation at each
resolution. The resolutions requiring correction correspond to all the factors, F ,
of N (F |N). For the example in Fig. 6a, where N = 325 = 45, the oversampling
must be corrected for at scales 15 × 15, 9 × 9, 5 × 5 and 3 × 3. Subtracting a
certain fraction of Isum corrects at resolution 1 × 1 leaving only a multiple (N)
of I(x, y).

The sampling achieved by taking the projection set for some F |N for all
projections t (mod F) yields the sampling pattern υF (x, y) repeated (mod F)
in the x and y directions. An example of this is depicted in Fig. 6b for N = 45
and F = 9. This sampling pattern can be used to correct the over-representation
from back-projection at a resolution of 9 × 9. This technique is used to correct
the back-projection at each resolution.

Back projection for pixel (x, y) is defined as
(∑

{a,b}∈PN
Ra,b〈ay − bx〉N

)
/N .

Correction for the over-representation at each resolution F×F , for F |P , is found
as AF

∑
{b,a}∈θF

∑N/F−1
j=0 Rb,a〈ay − bx + jF 〉N where the scaling factors, AF ,

required are found as

AF =
F

N

∏
p| N

F

(1 − p)
∏

p| N
F �F

p

(1 − p)
. (11)

where p | N
F � F denotes some prime, p, that divides N/F but does not divide

F . Therefore the entire inversion process can be written as

I(x, y) =
1
N

⎡⎢⎣
∑

{a,b}∈PN
Rb,a〈ay − bx〉N

−
∑

F |N AF

∑
{b,a}∈ΘF

∑N/F−1
j=0 Rb,a〈ax − by + jF 〉N

− A1Isum

⎤⎥⎦ . (12)

146 A. Kingston and I. Svalbe

(a) (b) (c) (d)

(e)

Fig. 7. Depiction of the correction made by each resolution of
the reconstruction of the Υ (175) = 240×175 DRT of a 175 Lena
image. (a) Uncorrected back-projection. (b) Corrected at reso-
lution 35×35. (c) Corrected at resolution 25×25. (d) Corrected
at resolution 7 × 7. (e) Correcting at resolution 5 × 5 and sub-
tracting A1Isum completes all required corrections and exactly
reproduces the original image

The result of the correction process at each resolution for the inversion of the
Υ (175) × 175 DRT of a 175 × 175 Lena image is depicted in Fig. 4.2.

The reconstruction can also be performed via Fourier space by taking the 1-D
DFT of each projection as O(NΥ (N) logN) and mapping it onto the 2-D DFT
of the image, using the discrete Fourier slice theorem given in section 3.2. This
will over-represent some spatial frequencies according to υN (u, v). Dividing the
value at each spatial frequency by υN (u, v) and applying the inverse 2-D DFT
to this data in O(N2 logN) operations recovers the original image.

5 Conclusion

A DRT based on modulo arithmetic which applies to N × N arrays for N ∈ N
has been presented. It projects the 2-D image into a set of N

∏
p|N (1 + 1/p)

projections of length N . It is a redundant transform as with the DPRT. The
multi-resolutional nature of the transform may prove useful in image analysis,
particularly for textures and patterns. Research into this aspect and the devel-
opment of an orthogonal DRT over N and M × N are the subject of ongoing
work. An investigation into the distribution of the discrete angles required for
N ×N as compared to the p× p set and the uniformly distributed angle set for
the continuous RT is also the subject of ongoing research.

Important properties of the continuous Radon transform are preserved in
this discrete formalism. A discrete form of the Fourier slice theorem and the
convolution property hold for this DRT over N . These properties allow the DRT
to be obtained in O(N2 logN

∏
p|N (1 + 1/p)) operations and make it a useful

image processing tool, reducing 2-D problems to a set of 1-D problems.

A Discrete Modulo N Projective Radon Transform 147

Acknowledgements

Thanks to Fred Ninio, School of Physics and Materials Engineering, Monash
University, for discussions on Group theory applied to give the DRT. AK is a
Monash University postgraduate student in receipt of an Australian Postgradu-
ate Award scholarship, provided through the Australian Government.

References

1. Matus, F., Flusser, J.: Image representation via a finite Radon transform. IEEE
Transactions on Pattern Analysis & Machine Intelligence 15 (1993) 996–1006

2. Hsung, T., Lun, D., Siu, W.: The discrete periodic Radon transform. IEEE Trans-
actions on Signal Processing 44 (1996) 2651–2657

3. Kingston, A.: Orthogonal discrete Radon transform over pn. Signal Processing
(submitted November 2003)

4. Beylkin, G.: Discrete radon transform. IEEE Transactions on Acoustics, Speech,
& Signal Processing 35 (1987) 162–172

5. Svalbe, I., van der Spek, D.: Reconstruction of tomographic images using analog
projections and the digital Radon transform. Linear Algebra and Its Applications
339 (2001) 125–145

6. Kingston, A., Svalbe, I.: Adaptive discrete Radon transforms for grayscale images.
In: Electronic Notes in Discrete Mathematics. Volume 12., Elsevier (2003)

7. Lun, D., Hsung, T., Shen, T.: Orthogonal discrete periodic Radon transform. Part
I: theory and realization. Signal Processing 83 (2003) 941–955

8. Rote, G.: Finding the shortest vector in a two dimensional lattice modulo m.
Theoretical Computer Science 172 (1997) 303–308

9. Svalbe, I., Kingston, A.: Farey sequences and discrete Radon transform projection
angles. In: Electronic Notes in Discrete Mathematics. Volume 12., Elsevier (2003)

10. Hardy, G., Wright, E.: An introduction to the theory of numbers. 5 edn. Clarendon
Press, Oxford (1979)

11. Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE
Press (1988)

Two Remarks on Reconstructing Binary Vectors
from Their Absorbed Projections

Attila Kuba1 and Gerhard J. Woeginger2

1 Department of Image Processing and Computer Graphics,
University of Szeged, H-6720, Szeged Árpád tér 2., Hungary

kuba@inf.u-szeged.hu
2 Department of Mathematics and Computer Science,

TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
kgwoegi@win.tue.nl

Abstract. We prove two small results on the reconstruction of binary
matrices from their absorbed projections: (1) If the absorption constant is
the positive root of x2 +x−1 = 0, then every row is uniquely determined
by its left and right projections. (2) If the absorption constant is the root
of x4 − x3 − x2 − x + 1 = 0 with 0 < x < 1, then in general a row is not
uniquely determined by its left and right projections.

1 Introduction

The reconstruction of binary matrices from their row and column sums is a
basic problem in discrete tomography, and work on this problem goes back to a
seminal paper of Ryser [5] from 1957. Recently, Kuba and Nivat [4] introduced a
new discrete tomography model that they call the emission discrete tomography
model, EDT for short. In this EDT model, the whole space is filled with some
homogeneous partially absorbing material, and the function to be reconstructed
represents an object emitting radioactive rays into the surrounding space. Hence,
the measurements in EDT are absorbed projections that depend on both, the
emitting object and the absorption.

Formally, a picture is a binary m × n matrix A = (ai,j)m×n. The entries
ai,j are from {0, 1}, and they are sometimes called pixels. Measurements of the
picture are taken by sending rays through the material; since the material is par-
tially absorbing, these rays become gradually weaker as they proceed through the
material. In [2, 3, 4], the absorption behavior is characterized by the absorption
constant

β =
1
2
(−1 +

√
5), (1)

where β ≈ 0.618 is the positive root of the equation

β2 + β = 1. (2)

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 148–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Two Remarks on Reconstructing Binary Vectors 149

Then the absorbed left projection ALPi of row i is defined as

ALPi =
n∑

j=1

ai,j · βj (3)

and the absorbed right projection ARPi of row i is defined as

ARPi =
n∑

j=1

ai,j · βn+1−j . (4)

Intuitively speaking, in the left projection the ray enters the row from the left
hand side. As the ray passes through the pixels at the beginning of the row, it is
still strong, and provides precise information. Then the ray becomes gradually
absorbed, and the factors βj in (3) encode this absorption. In the right projec-
tion, the ray enters the row symmetrically from the right hand side, and this
leads to the symmetric formula given in (4). Absorbed upward and downward
projections of columns are defined analogously.

The papers by Kuba and Nivat [4], Balogh et al. [2], and Kuba et al. [3]
discuss a variety of algorithmical and combinatorial questions around recon-
struction problems with absorbed projections. Noteworthy, all these papers only
study the cases with absorbed left projections of rows (but without right pro-
jections) and with absorbed upward projections of columns (but without down-
ward projections). Barcucci et al. [1] proved that the left and right absorbed
projections determine uniquely the binary matrix if the absorbtion coefficient is
μ = log((1 +

√
5)/2) and they gave an algorithm for the reconstruction.

In this note, we will show that the corresponding problems where the left
and right absorbed row projections are known simultaneously are rigid and
highly constrained. Our combinatorial proof is different from the proof given
by Barcucci et al. [1] in the sense that it does not use the concenpt of switching
component.

Theorem 1. In the EDT model with absorption constant β = 1
2 (−1 +

√
5), the

left and the right absorbed projections ALPi and ARPi determine the row ri

uniquely.

Up to now, we have only considered the basic EDT model with absorption
constant β = 1

2 (−1 +
√

5) (which arguably is the simplest non-trivial EDT
model). Interestingly, the statement in Theorem 1 does not generalize to arbi-
trary values of the absorption constant:

Theorem 2. Consider the EDT model where the absorption constant

γ =
1
4

(√
13 + 1 −

√
2
√

13 − 2
)

≈ 0.581 (5)

is the unique real root of γ4 − γ3 − γ2 − γ + 1 = 0 that satisfies 0 < γ < 1.
Then the left and the right absorbed projections ALPi and ARPi in general do
not determine a row ri uniquely.

150 A. Kuba and G.J. Woeginger

2 Proof of the Unique Reconstruction Result

In this section we prove Theorem 1. Throughout, let β = 1
2 (−1+

√
5) be defined

as in (2), and let α = 1
2 (1 +

√
5) denote the positive root of α2 = α + 1. Note

that α = 1/β. Furthermore, we define the Fibonacci numbers as usual by

F−3 = −1 F−2 = 1 F−1 = 0 F0 = 1 F1 = 1 (6)

and by Fn = Fn−1 + Fn−2 for all n ≥ 2.

Proposition 1. The following statements on the Fibonacci numbers are well-
known:

(i) αi = Fi−1α + Fi−2 for all i ≥ 0.
(ii) βi = (−1)i−1Fi−1β + (−1)i−2Fi−2 for all i ≥ 0.
(iii) Fi+2 − 1 = Fi + Fi−1 + · · · + F1 + F0 for all i ≥ 0.

Proof. By induction on i. �

Proposition 2. Let xi ∈ {−1, 0, 1} for i ≥ 0. Then the following statements
hold true:

(i) If
∑�

i=0 F2i · x2i = 0, then x2i = 0 for i = 0, . . . , �.
(ii) If

∑�
i=0 F2i+1 · x2i+1 = 0, then x2i+1 = 0 for i = 0, . . . , �.

Proof. Proof of statement (i). Suppose for the sake of contradiction that x2i �= 0
for some i, and consider the largest index k with x2k �= 0. Without loss of
generality, we may assume that x2k = −1 (and otherwise, we multiply all x2k

by −1). Then
∑k−1

i=1 F2i · x2i − F2k = 0. This leads to

F2k =
k−1∑
i=0

F2i · x2i ≤
k−1∑
i=0

F2i

=
k−1∑
i=0

F2i−2 + F2i−1 =
2k−3∑
i=−2

Fi < 1 +
2k−2∑
i=0

Fi.

This blatantly contradicts statement (iii) in Proposition 1, and proves state-
ment (i). Statement (ii) can be handled similarly: Let k be the largest index k
with x2k+1 �= 0, and assume that x2k+1 = −1. Then

F2k+1 =
k−1∑
i=0

F2i+1 · x2i+1 ≤
k−1∑
i=0

F2i+1

=
k−1∑
i=0

F2i−1 + F2i =
2k−2∑
i=−1

Fi =
2k−2∑
i=0

Fi.

This contradicts Proposition 1.(iii) and completes the proof of statement (ii). �

Two Remarks on Reconstructing Binary Vectors 151

Now consider two rows r1 = 〈a1, . . . , an〉 and r2 = 〈b1, . . . , bn〉 with pixels
ai, bi ∈ {0, 1} in some binary picture. We assume that the left projections of
these two rows are identical, i.e.,

n∑
i=1

ai β
i =

n∑
i=1

bi β
i, (7)

and that also their right projections are identical, i.e.,
n∑

i=1

ai β
n+1−i =

n∑
i=1

bi β
n+1−i. (8)

For i = 1, . . . , n we define ci = ai − bi with ci ∈ {−1, 0,+1}. Furthermore, we
introduce the four auxiliary quantities A =

∑n
i=1 Fi−2 ci, B =

∑n
i=1 Fi−3 ci,

C =
∑n

i=1(−1)i−2Fi−2 ci, and D =
∑n

i=1(−1)i−3Fi−3 ci.
Now Equation (7) can be written as

∑n
i=1 β

ici = 0. By using statements (i)
and (ii) in Proposition 1, this leads to

0 =
n∑

i=1

βici =
n∑

i=1

((−1)i−1Fi−1β + (−1)i−2Fi−2)ci = β(D − C) + C. (9)

Similarly, Equation (8) can be written as
∑n

i=1 α
ici = 0 and yields

0 =
n∑

i=1

αici =
n∑

i=1

(Fi−1α + Fi−2)ci = α(A + B) + A. (10)

Since α and β are irrational numbers, whereas D−C, C, A+B, A are integers,
the Equations (9) and (10) imply D − C = 0, C = 0, A + B = 0, and A = 0.
Hence, A = B = C = D = 0 holds. From this we derive

0 = A + C =
n∑

i=1

(1 + (−1)i−2)Fi−2 ci = 2

n/2�∑
i=1

F2i−2c2i. (11)

Equation (11) together with Proposition 2.(i) now yields that all ci with an even
index are 0. Furthermore, we derive for the odd indices that A − C = 0 and
therefore

0 =
n∑

i=1

(1− (−1)i−2)Fi−2 ci = 2
�n/2∑
i=1

F2i−3c2i−1 = 2
�n/2∑
i=2

F2i−3c2i−1. (12)

Here we used in the final step that F−1 = 0. Equation (12) together with Propo-
sition 2.(ii) now yields that all ci with an odd index i ≥ 3 are 0. What about
c1? The value of B =

∑n
i=1 Fi−3 ci boils down to B = F−2c1 = c1, and together

with B = 0 this implies that also c1 = 0. Summarizing, ci = 0 must hold for all
i = 1, . . . , n. This implies ai = bi for all i = 1, . . . , n. Hence, the two rows r1 and
r2 must be identical, and any row is uniquely determined by its left and right
absorbed projections. This completes the proof of Theorem 1.

Remark 1. About absorption values for which any binary matrix is uniquely
determined by its absorbed row sums see Section 6 in [3].

152 A. Kuba and G.J. Woeginger

3 Proof of the Non-unique Reconstruction Result

In this section we prove Theorem 2. Hence, consider an absorption constant
γ with 0 < γ < 1 that is a root of 1 + γ4 = γ + γ2 + γ3 as defined in (5).
Consider a 2 × 10 matrix with two rows r1 = 〈1, 0, 0, 0, 1, 1, 0, 0, 0, 1〉 and r2 =
〈0, 1, 1, 1, 0, 0, 1, 1, 1, 0〉. Then

ALP1 = γ + γ5 + γ6 + γ10 = (γ + γ6) (1 + γ4)

= (γ + γ6) (γ + γ2 + γ3)

= γ2 + γ3 + γ4 + γ7 + γ8 + γ9 = ALP2.

Since rows r1 and r2 both are left-right symmetric, this chain of equations also
yields ARP1 = ARP2. Summarizing, these two rows both have the same ab-
sorbed left projection and both have the same absorbed right projection. Gen-
erally, it is not possible to uniquely reconstruct a row from its two projections.
This proves Theorem 2.

Remark 2. Of course, the left and right absorbed projections determine the bi-
nary vector uniquely if its size is small enough, that is, if n ≤ 4. The explanation
is that a binary vector is non-uniquely determined by its left and right absorbed
projections if and only if the equation 1 + γ4 = γ + γ2 + γ3 can be applied in
the description of its value. This equation requires at least 5 binary digits.

Acknowledgment

This work was supported by the NSF Grant DMS 0306215.

References

1. Barcucci, E., Frosini, A., Rinaldi, S.: Reconstruction of discrete sets from two ab-
sorbed projections: an algorithm. Electronic Notes on Discrete Mathematics 12
(2003)

2. Balogh, E., Kuba, A., Del Lungo, A., Nivat, M.: Reconstruction of binary matrices
from absorbed projections. In Proceedings of the 10th International Conference
on Discrete Geometry for Computer Imagery (DGCI’2002), Springer LNCS 2301
(2002) 392–403

3. Kuba, A., Nagy, A., Balogh, E.: Reconstuction of hv-convex binary matrices from
their absorbed projections. Discrete Applied Mathematics 139 (2004) 137–148

4. Kuba, A., Nivat, M.: Reconstruction of discrete sets with absorption. Linear Algebra
and Applications 339 (2001) 171–194

5. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Canadian Jour-
nal of Mathematics 9 (1957) 371–377

How to Obtain a Lattice Basis from a Discrete
Projected Space

Nicolas Normand, Myriam Servières, and JeanPierre Guédon

IRCCyN/IVC, École polytechnique, University of Nantes,
Rue Christian Pauc, 44306 Nantes

Abstract. Euclidean spaces of dimension n are characterized in discrete
spaces by the choice of lattices. The goal of this paper is to provide a
simple algorithm finding a lattice onto subspaces of lower dimensions
onto which these discrete spaces are projected. This first obtained by
depicting a tile in a space of dimension n − 1 when starting from an
hypercubic grid in dimension n. Iterating this process across dimensions
gives the final result.

1 Introduction

Regular lattices constitute the cornerstone for the building of discrete geometry
tools and also for bases of classical continuous space of functions. Of course,
these regular lattices can be defined without any outside reference. However,
the definition of the resulting lattice is not obvious when a problem is designed
in a discrete space and when it is mandatory to go back and forth from this
first space to an other discrete space using a given discrete transform. When the
same problem is entirely defined in a discrete manner, the lattice identification
problem can become even harder. This paradigm was used to construct a cryp-
tographic/signature scheme using the NTRU lattice [1].In this case, the lattice
identification leads to an NP-problem.

Lattice identifications have also been investigated by Conway and Sloane
for sphere packing which results are mainly employed for vector quantization
in the multimedia coding area [2]. In Sect. 2, the starting point to review the
literature will lie into the continuous/discrete correspondence firstly established
by Shannon and generalized by Unser-Aldroubi. This work allows to start with
a basis through a tensorial product, to sample the continuous space to give a
lattice onto which a Riesz functional basis will be defined.

The aim of this paper is then to demonstrate how to obtain an unitary
tile with a regular lattice on the projection hyperplane with discrete projection
directions. This will be performed in a general manner in Sect. 3. The fact that
we restrict the projection operator to discrete projection is based on the attempt
to get a simple way to obtain a lattice onto the hyperplane. The difficulty is then
to extract the lattice from regular projection grids, i.e. not to oversample the
hyperplane grid with unused points nor to undersample a grid from which the
lattice would not be obtained.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 153–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 N. Normand, M. Servières, and J. Guédon

In other words, each point of the discrete projection plane must have a pre-
decessor in the initial space and each point of the initial lattice is projected onto
an existing point.

2 Related Work

Starting with the construction of orthonormal bases that give regular tiling leads
to the Gram-Schmidt orthonormalisation procedure that can be found in almost
any algebra textbook [3]. Because of the normalization, the resulting basis can
be easily discretised and replicated to give a regular tiling.

Following this path (starting from the continuous point of view and discretiz-
ing afterward) any n dimensional continuous space will give regular tiling from
this unconstrained orthonormal continuous grid. As a matter of fact, Unser and
Aldroubi have generalized the Shannon-Whittaker-Kotelnikov Sampling Theo-
rem starting with this n-dimensional orthogonal basis then lattice [4, 5]. The
initial purpose of this theorem is to use other functional bases than the Riesz
bases {(sinc (kx), k ∈ Z)}.

This theorem is described in Fig. 1
The first step corresponds to the orthogonal projection of the L2 function f(x)

onto a closed subspace of functions generated by a Riesz basis {η(kx), k ∈ Z}.
In other words, these functions already need to be defined from a tiling (the
first versions of the theorem corresponds to cardinal functions as the sinc for
Shannon or cardinal splines for Unser-Aldroubi).

The second step also uses the same tiling but explicitly since it just picks up
the values onto the tiling and throw out the rest of the continuous functions.

The third step re-generates this previous continuous function from three dif-
ferent informations:

1. the dual functional basis η̊ (defined onto the tile)
2. the sample fη(k) (defined onto the tile)
3. the tile which allows to perform the discrete convolution that lies onto the

box 3.

There are two major points with this great theorem:

1. The tiling is the subsequent material that links continuous and discrete
words. The strength of this theorem is to allow to work only into a discrete
word fη(k) and go back into a continuous word only when mandatory.

Fig. 1. Representation of the Unser-Aldroubi theorem

How to Obtain a Lattice Basis from a Discrete Projected Space 155

2. The only tilling known to allow the conditions of the theorem are obtained
by tensorial products over higher dimensions. In other words, the Riesz basis
structure in one dimension {η(k − x), k ∈ Z} can not be used in two dimen-
sions as {η(

√
((k− l)2 +(l−y)2)), (k, l) ∈ Z2} but the only known extension

is {η(k − l).η(l − y), (k, l) ∈ Z2}. In this latter extension, Fig. 1 where x is a
n-dimensional vector still holds.

As a consequence using specific discrete operator (in our case a projector op-
erator) between step 2 and step 3 must be done with a correspondence between
grids not to loose information and the benefits of the theorem. This correspon-
dance has been applied for the continuous and discrete Radon transforms defined
into spline spaces leading to new filtered backprojection algorithms [7, 8].

3 Obtaining a Tile in a m-Dimensional Space from a
n-Dimensional Space

3.1 From n-Dimension to (n − 1)-Dimension

The initial space L is a lattice in a Euclidean space. This n-dimensional discrete
space can be seen as the regular sampling of a continuous n-dimensional space
structured by a hypercubic grid {i1, . . . , in}. Each point (b1, . . . , bn) ∈ Zn in the
discrete space corresponds to the point b1×i1+. . .+bn×in in the continuous space
(each lattice point is described by a n-dimensional vector b = {b1, . . . , bn} relative
to the lattice basis {i1, . . . , in}). The continuous space is translation invariant
according to any vector im or any integer combination of vectors i1, . . . , in.

By projecting the initial n-dimensional space along a line direction, we create
a (n − 1)-dimensional hyperplane. It can be easily seen (Fig. 2) that if the line
direction is discrete (an integer combination of i1, . . . , in), then the hyperplane
has a regular discrete structure: it is also a lattice. It is translation-invariant
along any integer combination of i′1, . . . , i

′
n, where each i′m is the projection of

im on the hyperplane. However, the set {i′1, . . . , i′n} is not a base (its dimension
is n − 1) and a n − 1-vector subset does not generally define a tile.

The purpose is to extract a n−1-vector basis from {i′1, . . . , i′n} that defines a
lattice basis for the projected hyperplane. Equivalently, it will lead to a discrete
(n − 1) × n projection matrix.

Fig. 2. Some examples of 3D projected grids with projection directions (0, 1, 1), (1, 1, 2)
and (1, 2, 2)

156 N. Normand, M. Servières, and J. Guédon

The proposed method will conceptually use the set of vectors {i′1, . . . , i′n},
obtained by projecting {i1, . . . , in} along the line direction (v1, . . . , vn) onto the
hyperplane. The relationship that links these vectors together is given by the
projection direction:

v1 × i′1 + . . . + vn × i′n = 0 . (1)

In the following, we will assume that the subset {i′1, . . . , i′n−1} is a vector
basis (i.e. that i′n is a linear combination of these vectors). Hence, i′1, . . . , i

′
n−1

generates the continuous projected hyperplane. This is always true except when
the last component of the projection direction, vn, is zero. In this particular
case, (1) creates a linear dependence between the vectors i′1, . . . , i

′
n−1. But since

the projection direction is not the null vector, there is at least one non-zero vm

component. The previous assumption can be ensured by permuting the vectors
twice: before applying the method in order to put i′m at the end and after
applying the method to put the vectors back in the initial order.

The method iteratively creates a set of lattice basis (j1, . . . , jk) with increas-
ing dimension k. Each intermediate basis (j1, . . . , jk) generates the part of L
contained in the space spanned by (i′1, . . . , i

′
k). At step k, the k − 1 previously

found vectors build a tile i.e. a parallelepiped which vertices correspond to pro-
jected discrete points and which interior does not contain any discrete points.

First Basis Vector. The first vector j1 is chosen following the i′1 direction from
the origin point O. The end point of j1 is the visible point in i′1 direction (the
closest point from O in this direction). Since the dimension of the projection
matrix is n − 1 for a line projection, there are exactly two linearly independant
ways to follow this direction, either with i′1 or with a linear combination of
i′2, . . . , i

′
n according to (1):

v1 × i′1 = −v2 × i′2 − . . . − vn × i′n . (2)

The second term of this equation can be written as an integral linear combination
with a division by the greatest common divisor of its coefficients:

v1

gcd(v2, . . . , vn)
× i′1 = −v2 × i′2 + . . . + vn × i′n

gcd(v2, . . . , vn)
. (3)

All the linear combinations of i′1 and v1i
′
1/ gcd(v2, . . . , vn) are obviously

collinear to i′1. The visible point from the origin O in this direction is given
by the minimal linear combination with integer coefficients. Let’s remark that
gcd(v2,...,vn)
gcd(v1,...,vn) and v1

gcd(v1,...,vn) are integers and relatively prime. Following the
Bézout’s theorem, there exist α1, β1 ∈ Z such that:

α1 × gcd(v2, . . . , vn)
gcd(v1, . . . , vn)

+ β1 × v1

gcd(v1, . . . , vn)
= 1

α1 + β1
v1

gcd(v2, . . . , vn)
=

gcd(v1, . . . , vn)
gcd(v2, . . . , vn)

. (4)

How to Obtain a Lattice Basis from a Discrete Projected Space 157

The minimal integral combination of i′1 and v1i′
1

gcd(v1,...,vn) is then chosen as the
first vector of the projected lattice basis:

j1 =
gcd(v1, . . . , vn)
gcd(v2, . . . , vn)

i′1 .

From α1 and β1 (obtained with the extended Euclidean algorithm) we can
find two points that project onto j1:

A1 =
(
α1,−β1

v2

gcd(v2, . . . , vn)
, . . . ,−β1

vn

gcd(v2, . . . , vn)

)
,

B1 =

⎛⎝α1 + β1
v1

gcd(v2, . . . , vn)
, 0, . . . , 0︸ ︷︷ ︸

n−1

⎞⎠ . (5)

Conversely to B1, A1 always has integer components and thus belongs to L.

The kth Basis Vector. Let assume that vectors j1 to jk−1 have already been
found. The lattice spanned by (j1, . . . , jk−1) is the subset of L restricted to the
continuous subspace generated by (i′1, . . . , i

′
k−1).

The vector i′k introduces a new dimension because i′1, . . . , i
′
k are linearly in-

dependent. jk must have the smallest non null component in this new direction.
There are two independent ways to move along i′k, following i′k itself or a linear
combination of i′k+1, . . . , i

′
n according to (1):

v1i
′
1 + . . . + vki

′
k

gcd(vk+1, . . . , vn)
= −

vk+1i
′
k+1 + . . . + vni

′
n

gcd(vk+1, . . . , vn)
. (6)

The closeness of the hyperplanes to the origin is measured by the projection onto
i′k and gives respectively 1 and vk

gcd(vk+1,...,vn) . The minimum integral combination
is given by αk and βk:

αk + βk
vk

gcd(vk+1, . . . , vn)
=

gcd(vk, . . . , vn)
gcd(vk+1, . . . , vn)

. (7)

The new basis vector jk is directly derived:

jk = αki
′
k + βk

v1i
′
1 + . . . + vki

′
k

gcd(vk+1, . . . , vn)
. (8)

Two antecedents of jk can be obtained by:

Ak =

⎛⎜⎝0, . . . , 0︸ ︷︷ ︸
k−1

, αk,−βk
vk+1

gcd(vk+1..vn)
, . . . ,−βk

vn

gcd(vk+1..vn)

⎞⎟⎠ ,

Bk =

⎛⎜⎝ βkv1

gcd(vk+1..vn)
, . . . ,

βkvk−1

gcd(vk+1..vn)
, ak +

βkvk

gcd(vk+1..vn)
, 0, . . . , 0︸ ︷︷ ︸

n−k

⎞⎟⎠. (9)

158 N. Normand, M. Servières, and J. Guédon

Projection Matrix. Any point M(a1, . . . , an) in L is projected on the hy-
perplane to a point p(M) = M ′ with integer coordinates (b1, . . . , bn−1) in the
(j1, . . . , jn−1) basis. The preimage of M ′ is the set of points in L that are aligned
with M relative to the projection direction V . These points can be reached from
the known point b1A1 + . . . + bn−1An−1:

p−1(M ′) = {m|p(m) = M ′} =
{
b1A1 + . . . + bn−1An + k

V

gcd(v1..vn)
, k ∈ Z

}
.

(10)
(A1, . . . , An−1, V/ gcd(v1..vn)) is a basis of the initial lattice L. An extra row
corresponding to the direction of the projection is added:

A =
[
A1| . . . |An−1|

V

gcd(v1..vn)

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 0 . . . 0 v1
gcd(v1..vn)

−β1
v2

gcd(v2..vn) α2
. . .

...

−β1
v3

gcd(v2..vn) −β2
v3

gcd(v3..vn)
. . . 0

...
... αn−1

vn−1
gcd(v1..vn)

−β1
vn

gcd(v2..vn) −β2
vn

gcd(v3..vn) . . . −βn1
vn

gcd(vn−1,vn)
vn

gcd(v1..vn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

P = [Idn−1|0].A−1 . (12)

Figure 3 pictures the results of our algorithm for a simple 3D to 2D projection
of angle direction (6, 10, 15). The projection matrix is given by:

Fig. 3. The result of the projection of a 3D lattice with angle direction (6, 10, 15).
The three dashed lines vectors represent the projection of the initial 3D basis vectors
whereas the two plain lines vectors are the result of the computed lattice

How to Obtain a Lattice Basis from a Discrete Projected Space 159

P =
[

5 6 −6
0 3 −2

]
,

and

A =

⎡⎣−1 0 6
−2 1 10
−3 1 15

⎤⎦ .

3.2 From (n − 1)-Dimension to m-Dimension

To go from a n-dimensional space to a m-dimensional space (m ≥ 1), there are
(n − m) projection directions V :

V =

⎡⎢⎣ v1,1 . . . v1,n

...
...

vn−m,1 . . . vn−m,n

⎤⎥⎦ . (13)

The described method is followed along the first direction:

V1 = [v1,1 . . . v1,n] , (14)

and gives the transformation of the basis (i1, . . . , in) to (j1, . . . , jn−1). Each
Vi, i ∈ {2, . . . , (n−m)} is projected onto (j1, . . . , jn−1). They give the projection
directions in the (n − 1)-dimensional space with the (j1, . . . , jn−1) basis. The
process is iterated to reach a m-dimensional space.

4 The Projection Matrix

We will define the projection matrix from a n-dimensional space onto a m-
dimensional space on the regular grid defined before.

To obtain the final projection matrix, the projection directions can be fol-
lowed in different order. One projection direction is chosen, the other projection
directions are projected following this first direction and the projection matrix
following this direction is derivated. In the projected direction, an other direc-
tion is chosen and the same process is iterated. Finally the projection matrix
from the n-dimensional space to the m-dimensional space is obtained by putting
together the intermediate matrix.

To go from a n-dimensional space to an m-dimensional space (m ≥ 1), there
are (n − m) projection directions Vk.

To obtain the projection matrix from a n-dimensional to an m-dimensional
space we will calculate the projection matrix step by step by lowering the di-
mension. The final nD to mD projection matrix is composed by products of
all the projection matrices describing hyperplane lattices. This matrix being the
product of integer matrices has only integer coefficients.

160 N. Normand, M. Servières, and J. Guédon

5 Conclusion

Tiling a discrete projected space from higher dimensional Euclidean spaces was
the subject of this paper. We first demonstrated how to obtain a tile in a (n −
1)-dimensional space from the Euclidean hypercubic grid of dimension n. The
generalization across dimensions is quite straightforward. The obtained results
are directly useful for discrete Radon transforms.

References

1. Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman: NTRU A Ring-Based Public
Key Cryptosystem. in Algorithmic Number Theory (ANTS III), Portland, OR, June
1998, J.P. Buhler (ed.), Lecture Notes in Computer Science 1423, Springer-Verlag,
Berlin, 1998, 267-288.

2. John H. Conway and N.J.A. Sloan: Sphere Packings, Lattices and Groups.
Springer(1998)

3. Harris, J.W., Stocker, H.: Handbook of Mathematics and Computational Science.
Springer(1998)

4. Aldroubi, A., Unser, M: Sampling procedures in function spaces and asymptotic
equivalence with Shannonś sampling theory. Numer. Funct. Anal. and Optimiz.
15(1994)1–21

5. Unser, M., Aldroubi, A., Eden, M.: Polynomial Spline Signal Approximations: Fil-
ter Desing and Assymptotic Equivalence with Shannonś Sampling Theorem. IEEE
Transaction on Information theory 38(1992)95–103

6. Guédon, JP., Bizais, Y.: Separable and radial bases for medical image processing.
SPIE lmage Processing 1898(1993)652–661

7. Guédon, JP., Bizais, Y.: Bandlimited and Haar Filtered Back-Projection Reconstuc-
tion. IEEE Transaction on Medical Imaging 13(1994)430–440

8. Guédon, J.P., Unser, M., Bizais, Y.: Pixel Intensity Distribution Models for Filtered
Back-Projection. Conference Record of the 1991 IEEE Nuclear Science Symposium
and Medical Imaging Conference

Local Characterization of a Maximum Set of
Digital (26, 6)-Surfaces�

Jose C. Ciria1, Angel de Miguel1, Eladio Domínguez1, Angel R. Francés1, and
Antonio Quintero2

1 Dpt. de Informática e Ingeniería de Sistemas, Facultad de Ciencias,
Universidad de Zaragoza, E-50009 – Zaragoza, Spain

{jcciria, admiguel, afrances}@unizar.es
2 Dpt. de Geometría y Topología, Facultad de Matemáticas,
Universidad de Sevilla, Apto. 1160, E-41080 – Sevilla, Spain

quintero@us.es

Abstract. This paper provides a local characterization for a set of digi-
tal surfaces SU defined in [6] by mean of continuous analogues. For this,
we firstly identify the set of admisible plates for any surface S ∈ SU

(i.e., the intersection S ∩ C of S with a unit cube C of Z3). Then, the
characterization is given in terms of a graph representing the intersection
of plates. In addition, we establish a further condition that detects the
digital surfaces in SU which are strongly separating objects.

The family SU consists of all objects which are a digital surface
in some homogeneous (26, 6)-connected digital space in the sense of [3].
Moreover, the subset of strongly separating surfaces of SU contains the
family of simplicity 26-surfaces and other surfaces in literature as well.

1 Introduction

One of the most interesting problems in Digital Topology is, probably, to obtain a
general notion of digital surface, defined as a “thin” set of voxels (or, equivalently,
points of Z3), that naturally extends to higher dimensions and such that these
digital surfaces have properties similar to those held by topological surfaces.
In this paper we restrict our interest to such a notion for the usual (26, 6)-
adjacency in image processing. Morgenthaler and Rosenfeld gave in [10] the
first definition of digital surface for this adjacency pair. Later on, Bertrand and
Malgouyres [4] introduced the family of strong 26-surfaces and showed that it
strictly contains the set of Morgenthaler’s surfaces. More recently, Couprie and
Bertrand [7] have proved that the strong 26-surfaces are still contained in a
larger set of surfaces called simplicity 26-surfaces. Despite of these contributions
the most general definition of digital surface for the (26, 6)-adjacency is not yet
clear. For example, in [9] it is suggested that the (26, 6)-connected digital object

� This work has been partially supported by the projects BFM2001-3195-C03-01 and
BFM2001-3195-C03-02 (MCYT Spain).

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 161–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

162 J.C. Ciria et al.

shown Fig. 3(a) “should normally be interpreted as a simple surface”, however it
is not a simplicity 26-surface. Thus, a new definition of digital surface is needed
to include this kind of objects.

Within the framework for Digital Topology proposed in [3] we have recently
found in [6] a homogeneous (26, 6)-connected digital space EU whose set of
digital surfaces SU is the largest in that class of digital spaces. In particular, the
Jordan–Brouwer and Index Theorems, proved in [3] and [2] for digital manifolds
of arbitrary dimensions, automatically hold for these surfaces. Moreover the
set SU strictly contains the family of simplicity 26-surfaces and the object in
Fig. 3(a) as well.

In spite of these nice properties, the digital surfaces in SU were defined in [6]
by constructing a continuous analogue, and thus it might not be considered a
completely digital notion. In this paper we give a purely digital characterization
of the family SU by the use of plates and graphs extending the Kong and Roscoe
method in [8] (see Theorem 3).

The digital objects characterizing the surfaces in SU are introduced in Sec-
tion 2. In Section 3 we recall the basic elements of the framework in [3], and the
definition of EU , needed to obtained this characterization in Section 4.

Despite of all surfaces in SU are Jordan objects, some of them might be
considered as pathological examples since the deletion of one of their points
might yield an object that still separates its complement into two 6-components.
In Section 5, we state a characterization of the subset of non-pathological surfaces
of SU , which still strictly contains the family of simplicity 26-surfaces [6].

As a conclusion, the results in [6] and this work lead to a good and general
enough approach to a notion of digital surface since:
1. it is suitable for image processing as it is given in terms of a graph;
2. these digital surfaces have properties similar to those of topological surfaces;
3. and, in a certain sense, they constitute a maximum family of digital surfaces

that, as far as we know, contains any set of surfaces defined on Z3 using the
graph-based approach in the literature.

2 A Set of Jordan Objects

In this section we introduce a family of objects in the discrete space Z3 that
satisfies a Jordan property for the usual (26, 6)-adjacency. These objects are
made of small surface pieces, called plates, which are adequately glued to each
other in the way defined by an assembly graph. In order to introduce these
notions, we firstly recall some basic definitions of the graph–theoretical approach
to Digital Topology.

Two voxels σ = (σ1, σ2, σ3), τ = (τ1, τ2, τ3) ∈ Z3 are said to be 6-, 18- or
26-adjacent if max{|σi − τi |; 1 ≤ i ≤ 3} ≤ 1 and they differ in, at most, one, two
or three of their coordinates, respectively. Moreover, we say that two 18-adjacent
voxels are strictly 18-adjacent if they are not 6-adjacent. A unit cube of Z3 is
any subset C of eight mutually 26-adjacent voxels. Similarly, a unit square of Z3

is a subset of four mutually 18-adjacent voxels.

Local Characterization of a Maximum Set of Digital (26, 6)-Surfaces 163

Cc
3 Cb

4 Ce
4 Cf

4 Cb
5 Cc

6

Bc
2 Bc

5 Bb
6 B8

Fig. 1. Some patterns that may appear in a digital object O ⊆ Z3. Each picture
represents a unit cube C of Z3, and the black dots are the set of voxels in O ∩ C. The
row above contains the six non-square plates that may appear in a digital object. The
patterns in the row below cannot appear in a 26-presurface

For each subset A ⊆ Z3, the transitive closure of the n-adjacency, n ∈
{6, 18, 26}, defines an equivalence relation whose classes are called the n-compo-
nents of A. Moreover, A is said to be n-connected if it has only one n-component.

Definition 1. Let O ⊆ Z3 be a digital object. A subset P ⊆ O is said to be a
plate in O if either P is a unit square of Z3 or P = O ∩ C, where C is a unit
cube of Z3, and P correspond (up to rotations and symmetries) to one of the
patterns in the set C = {Cc

3, C
b
4, C

e
4 , C

f
4 , C

b
5, C

c
6}; see Fig. 1 and Remark 3 below.

For any voxel σ ∈ O we denote by P(O, σ) the set of all plates in O containing
σ, and P(O) the set of all plates in O.

From the set P(O) of plates in a given object O we construct a bipartite
graph G(O), termed the assembly graph of O, whose nodes are the elements of
the set P(O)∪E(O), where each q ∈ E(O) = ∪σ∈OE(O, σ) is associated to a pair
of plates p1, p2 in O such that p1 ∩ p2 contains at least two voxels (notice that
p1 ∩p2 consists of three voxels at most.) More precisely, the sets E(O, σ) and the
edges of G(O) are chosen according to the following criteria. Let p1, p2 ∈ P(O)
be two plates, then:

1. If p1 ∩ p2 = {τ1, τ2} we consider a new node q ∈ E(O, τ1)∩E(O, τ2) and two
edges 〈pi, q〉, i = 1, 2, in G(O).

2. If p1 ∩ p2 = {τ0, τ1, τ2} then we consider two new nodes q1 and q2 and
four edges 〈pi, qj〉, i, j ∈ {1, 2}, in G(O). Moreover, assume τ0 is the only
voxel in p1 ∩ p2 which is 6-adjacent to both τ1 and τ2, then we set qj ∈
E(O, τ0) ∩ E(O, τj), j ∈ {1, 2}.

3. For each σ ∈ O, the set E(O, σ) consists exclusively of the elements q and
qj introduced above for all intersections p1 ∩ p2 containing σ.

For each voxel σ ∈ O we define the assembly graph of O around σ, G(O, σ), as
the subgraph of G(O) induced by the nodes in P(O, σ) ∪ E(O, σ).

164 J.C. Ciria et al.

(a) S

p

p

q

q

1
1

22

(b) G(S)

Fig. 2. A 26-presurface S and its assembly graph G(S). Each dot in (b) represents
one of the eight unit cubes shown in (a), which are actually plates of S. Squares in
(b) are the points that, together with plates, define the assembly graph of S; each one
represents the intersection between two plates

Definition 2. A digital object S ⊆ Z3 is said to be a 26-presurface if the fol-
lowing conditions hold for each voxel σ ∈ S.

1. For each unit cube C of Z3 the intersection S ∩ C does not corresponds (up
to rotations and symmetries) to any pattern in B = {Bc

2, B
c
5, B

b
6, B8}; see

Fig. 1.
2. If τ ∈ S is strictly 18-adjacent to σ and no other voxel in S is 6-adjacent to

both σ and τ then P(S, σ) ∩ P(S, τ) �= ∅.
3. If τ ∈ S is 6-adjacent to σ then P(S, σ) ∩ P(S, τ) consists exactly of two

plates.
4. P(S, σ) �= ∅ and G(S, σ) is a cycle.

Example 1. Figure 2 depicts a 26-presurface S, made of eight plates, and its
assembly graph G(S). Notice that the voxel τ0 ∈ S belongs to exactly two plates
p1, p2 ∈ P(O) for which p1 ∩ p2 = {τ0, τ1, τ2}. Hence, E(O, τ0) = {q1, q2} and
the assembly graph of S around τ0, G(S, τ0), is the cycle defined by the vertices
p1, p2, q1 and q2 in Fig. 2(b).

The main goal in this paper is to show that the assembly graph endows each
26-presurface with the combinatorial structure of a surface. More precisely, we
will show in Theorem 3 that 26-presurfaces characterize the digital surfaces of a
certain digital space EU = (R3, fU) defined in [6] within the approach to Digital
Topology in [3]. In order to state and prove Theorem 3 we recall in the next
section the basic elements of this framework and the definition of EU .

Remark 1. The assembly graph of an object O ⊆ Z3 can be derived from a
simpler graph whose nodes are the plates in O and two of them are adjacent
if their intersection contains at least two voxels. Moreover, the five conditions
defining 26-presurfaces can be rewritten in terms of this simpler graph.

Local Characterization of a Maximum Set of Digital (26, 6)-Surfaces 165

3 A Framework for Digital Topology

In [3] we propose a framework for Digital Topology in which a notion of digital
surface and, more generally, of digital manifold naturally arises. In this approach
a digital space is a pair (K, f), where K is a polyhedral complex, called device
model, which represents the spatial layout of voxels and f is a lighting function
from which we associate to each digital image an Euclidean polyhedron called
its continuous analogue.

In this paper we will only consider digital spaces of the form (R3, f), where
the device model R3, termed the standard cubical decomposition of the Euclidean
space R3, is the polyhedral complex determined by the collection of unit cubes
in R3 whose edges are parallel to the coordinate axes and whose centers are in
the set Z3. Each 3-cell in R3 is representing a voxel, and so the digital object
displayed in a digital image is a subset of the set cell3(R3) of 3-cells in R3; while
the other lower dimensional cells in R3 (actually, k-cubes, 0 ≤ k < 3) are used
to describe how the voxels could be linked to each other.

Remark 2. Each k-cell σ ∈ R3 can be associated to its center c(σ) which is a
point in the set Z3, where Z = 1

2Z = {x ∈ R ; x = z/2, z ∈ Z}. If dimσ = 3
then c(σ) ∈ Z3, so that every digital object O in R3 can be naturally identified
with a subset of the discrete space Z3. Henceforth we shall use this identification
without further comment. Notice also that if C is a unit cube (square) of Z3

then its center is the point c(α), where α ∈ R3 is a 0-cell (1-cell, respectively).
Thus, if P = O ∩ C is a plate in O we call α the center of P .

As it is usual, given two cells γ, σ ∈ R3 we write γ ≤ σ if γ is a face of σ, and
γ < σ if in addition γ �= σ. The interior of a cell σ is the set ◦

σ= σ − ∂σ, where
∂σ = ∪{γ ; γ < σ} stands for the boundary of σ. We refer to [11] for further
notions on polyhedral topology.

To recall the notion of lighting function we need the following definitions.
Given a cell α ∈ R3 and a digital object O ⊆ cell3(R3) the star of α in O is the set
st3(α;O) = {σ ∈ O ; α ≤ σ} of 3-cells (voxels) in O having α as a face. Similarly,
the extended star of α in O is the set st∗

3(α;O) = {σ ∈ O ; α ∩ σ �= ∅}. Finally,
the support of O is the set supp(O) of cells of R3 (not necessarily voxels) that are
the intersection of 3-cells in O; that is, α ∈ supp(O) if and only if α = ∩{σ ; σ ∈
st3(α;O)}. To ease the writing, we use the following notation: st3(α;R3) =
st3(α; cell3(R3)) and st∗

3(α;R3) = st∗
3(α; cell3(R3)). Finally, we write P(A) for

the family of all subsets of a given set A.
A lighting function on the device model R3 is a map f : P(cell3(R3))×R3 →

{0, 1} satisfying the following five axioms for all O ∈ P(cell3(R3)) and α ∈ R3:

(1) object axiom: if α ∈ O then f(O,α) = 1;
(2) support axiom: if α /∈ supp(O) then f(O,α) = 0;
(3) weak monotone axiom: f(O,α) ≤ f(cell3(R3), α);
(4) weak local axiom: f(O,α) = f(st∗

3(α;O), α); and,

166 J.C. Ciria et al.

(5) complement connectivity axiom: if O′ ⊆ O ⊆ cell3(R3) and α ∈ R3 are such
that st3(α;O) = st3(α;O′), f(O′, α) = 0 and f(O,α) = 1, then the set
α(O′, O) = ∪{ ◦

ω ; ω < α, f(O′, ω) = 0, f(O,ω) = 1} ⊆ ∂α is non-empty and
connected.

If f(O,α) = 1 we say that f lights the cell α for the object O, otherwise f
vanishes on α for O.

A digital space (R3, f) is said to be homogeneous if for any spatial motion
ϕ : R3 → R3 preserving Z3 the equality f(ϕ(O), ϕ(α)) = f(O,α) holds for all
cells α ∈ R3 and digital objects O ⊆ cell3(R3); see [6]. We refer to [3] for a
definition of digital spaces on more general device models.

Given a lighting function f , we associate to each digital object O ⊆ cell3(R3)
a continuous analogue |AO | which intends to be a “continuous interpretation”
of O in the digital space (R3, f). Namely, |AO | is the underlying polyhedron
of the simplicial complex AO, whose k-simplexes are 〈c(α0), c(α1), . . . , c(αk)〉
where α0 < α1 < · · · < αk are cells in R3 such that f(O,αi) = 1, 0 ≤ i ≤ k. The
complex AO is called the simplicial analogue of O. Notice that the center c(σ)
of a 3-cell σ ∈ cell3(R3) is a 0-simplex of Af

O if and only if σ ∈ O.
For the sake of simplicity we will write AR3 instead of Acell3(R3).
Continuous analogues allow us, in a natural way, to introduce digital notions

in terms the corresponding continuous ones. For example, we will say that an
object O is connected in a digital space (R3, f) if its continuous analogue |AO |
is a connected polyhedron. And, in the same way, the complement cell3(R3)−O
of O is said to be connected if |AR3 | − |AO | is connected. Moreover, we call
C ⊆ cell3(R3) a component of O (cell3(R3) −O) if it consists of all the voxels σ
whose centers c(σ) belong to a component of |AO | (|AR3 |−|AO |, respectively).
See Section 4 in [3] for more details on these notions of connectedness defined in
a much more general context.

For certain digital spaces (R3, f), these notions of connectedness can be re-
lated with the usual ones given on Z3 by mean of adjacency pairs. More pre-
cisely, given an adjacency pair (k, k) on Z3 we say that the digital space (R3, f)
is (k, k)-connected if the two following properties hold for any digital object
O ⊆ cell3(R3):

1. C is a component of O if and only if it is a k-component of O; and,
2. C is a component of the complement cell3(R3) − O of O if and only if it is

a k-component.

Several examples of (homogeneous) (26, 6)-connected digital spaces (R3, f)
can be found in [1, 3, 5] as well as examples of (k, k)-connected spaces for k, k ∈
{6, 18, 26}.

3.1 A Maximum Set of Digital Surfaces

Similarly to the previous definition of connectedness, we use continuous ana-
logues to introduce a notion of digital surface. Namely, an object S in a digital
space (R3, f) is called a digital surface if |AS | is a combinatorial surface without

Local Characterization of a Maximum Set of Digital (26, 6)-Surfaces 167

(a)

(b) (c)

Fig. 3. Some surfaces in (R3, fU) which are not simplicity 26-surfaces. Both black and
grey dots are voxels in the surface. In (a) and (b) the pattern (i.e., the intersection of
the surface with a unit cube C of Z3) consisting of the grey dots is not allowed in a
simplicity 26-surface. In (c), the configuration made of the four square plates containing
σ cannot appear in a simplicity 26-surface

boundary; that is, if for each vertex v ∈ AS its link lk(v;AS) = {A ∈ AS ; v,A <
B ∈ AS and v /∈ A} is a 1-sphere.

This notion of digital surface is closely related to the families of 26-connected
digital surfaces quoted in the Introduction. Actually, each of these families agrees
or is contained in the set of digital surfaces of a particular homogeneous (26, 6)-
connected digital space; see [1, 3, 5]. Moreover, in [6] we give a homogeneous
(26, 6)-connected digital space EU = (R3, fU) whose set of digital surfaces is the
largest in this class of digital spaces. More precisely, we prove

Theorem 1 (Th. 4 in [6]). Any digital surface S in an arbitrary homogeneous
(26, 6)-connected digital space (R3, f) is also a digital surface in EU .

The lighting function fU : P(cell3(R3)) × R3 → {0, 1} is defined as follows.
Given a digital object O ⊆ cell3(R3) and a cell δ ∈ R3, fU (O, δ) = 1 if and only
if one of the following conditions holds:

1. dim δ = 0 and the intersection O∩C, where δ is the center of the unit cube C
of Z3, corresponds (up to rotations and symmetries) with one of the patterns
in the set B∪C, with B = {Bc

2, B
c
5, B

b
6, B8} and C = {Cc

3, C
b
4, C

e
4 , C

f
4 , C

b
5, C

c
6};

see Fig. 1.
2. dim δ > 1 and δ ∈ supp(O).
3. dim δ = 1 and either st3(δ;R3) ⊆ O (i.e., δ is the center of a square plate in

O) or st3(δ;O) = {σ, τ}, with δ = σ ∩ τ , and fU (O,α1) = fU (O,α2) for the
vertices α1, α2 of δ.

Remark 3. From the definition of the lighting function fU it is not difficult to
check that digital surfaces in EU can contain each of the patterns in C, while
those in B are forbidden for a surface (see Lemma 3 below).

168 J.C. Ciria et al.

It is not difficult to check that each of the objects in Fig. 3 is (a piece of)
a digital surface in EU and, however, none of them is a simplicity 26-surface.
Therefore, the family of simplicity 26-surfaces is strictly contained in the set of
digital surfaces of EU . At this point, it is worth mentioning that Malandain et
al. [9] suggest to consider the object depicted in Fig. 3(a) as a surface.

We get the following separation theorem for digital surfaces in EU as a corol-
lary of the Jordan–Brouwer Theorem in [3] for almost arbitrary digital spaces.

Theorem 2. Each 26-connected digital surface S in EU separates its comple-
ment cell3(R3) − S into two 6-components.

In addition the digital surfaces in EU also satisfy the general Index Theorem
in [2] which provides us with a criterion to determining the components given
by Theorem 2.

4 Local Characterization of Digital Surfaces in EU

Despite its good properties, digital surfaces in the space EU might not be con-
sidered completely digital since their definition relies on the construction of a
continuous analogue. Our goal in this section is to characterize these surfaces as
the set of 26-presurfaces. This way, we get a procedure to determine whether a
digital object S is a digital surface in EU which does not depend on the lighting
function fU . Moreover, such procedure is local since the five conditions defining
26-surfaces can be checked in the 26-neighbourhood of each voxel σ ∈ S. More
precisely, we will prove

Theorem 3. A digital object S ⊆ Z3 is a 26-presurface if and only if S is a
digital surface in the space (R3, fU).

Next lemmas, which we will use later in the proof of Theorem 3, state some
elementary properties of the lighting function fU in relation to the conditions
defining 26-presurfaces. We do not include their proofs (which are not too hard
anyway) in order to keep the paper within the required length.

Lemma 1. Let O ⊆ Z3 be a digital object satisfying condition (1) in Defini-
tion 2. The two following properties hold for any cell δ ∈ R3.

a) If dim δ = 0 then fU (O, δ) = 1 if and only if δ is the center of a plate in O.
b) If dim δ = 1 and δ is the center of a plate in O then fU (O, δ) = 1 and

fU (O,αi) = 0 for the two vertices α1, α2 < δ.

Lemma 2. Let O ⊆ Z3 be a digital object satisfying conditions (1)-(3) in Defi-
nition 2. If a cell β ∈ R3, with dimβ ≤ 2 and fU (O, β) = 1, is not the center of
a plate in O then st3(β;O) = {σ1, σ2} and the set A = {α < β ; fU (O,α) = 1}
consists of exactly two cells, which are actually the centers of plates in O. More-
over, if dimβ = 1 then fU (O, γ) = 0 for any 2-cell γ > β.

Local Characterization of a Maximum Set of Digital (26, 6)-Surfaces 169

Lemma 3. Let O ⊆ Z3 be a digital object. If there exists a unit cube C of
Z3 such that O ∩ C ∈ B = {Bc

2, B
c
5, B

b
6, B8} then O is not a digital surface in

(R3, fU).

The lemmas above are also used in the proof of the following result which is
a crucial step in the proof of Theorem 3.

Proposition 1. Let O ⊆ Z3 be a digital object satisfying conditions (1)-(3)
in Definition 2. Then, for each σ ∈ O, there exists a simplicial isomorphism
ϕσ : G(O, σ) → lk(c(σ);AO).

Proof (Sketch). Firstly notice that lk(c(σ);AO) is 1-dimensional since no tetra-
hedra can appear in the simplicial analogue of any object satisfying condition
(1) in Def. 2. Furthermore, by Lemma 1 there is a bijection p "→ ϕσ(p) between
P(O, σ) and the set X of centers of cells c(α) ∈ L = lk(c(σ),AO) such that α
is also the center of a plate in O. Moreover, Lemmas 1 and 2 and the definition
of fU allow us to describe L as a bipartite graph generated by vertices in X on
one side and the set Y of those c(α) ∈ L such that α is not the center of a plate
on the other. Moreover, by using the same lemmas one can show that there is
a bijection between E(O, σ) and Y . Therefore one gets a bijection between the
vertex sets of L and G(O, σ). Finally, Lemmas 1 and 2 are used one more time
to show that this bijection extends to the required simplicial isomorphism.

Proof (of Theorem 3). Assume S ⊆ Z3 is a 26-presurface. It will suffice to
check that the link L = lk(c(δ);AS) is a 1-sphere for each cell δ ∈ R3 such
that fU (S, δ) = 1. For any voxel δ ∈ S Proposition 1 yields that L can be
identified with the assembly graph G(S, δ) around δ, and hence L is a 1-sphere
by Condition (4) in Definition 2.

If dim δ = 2 then st3(δ;S) = {σ1, σ2} by Lemma 2 and, moreover, exactly
two faces α1, α2 < δ are lighted by fU . Therefore, L coincides with the cycle
defined by the centers {c(α1), c(α2), c(σ1), c(σ2)}.

If δ is an edge of R3 which is the center of a square plate in S then L is
obviously a 1-sphere by Lemma 1 and the definition of fU . Otherwise, if δ is not
the center of a plate, the result follows by Lemma 2 as in the case dim δ = 2.

Finally, if δ is a vertex then it is the center of a plate p by Lemma 1. Moreover
the plate p belongs to the set C in Definition 1. Assume p does not corresponds
to pattern Cf

4 in Fig. 1. If σ1, σ2 ∈ p are strictly 18-adjacent voxels, we derive
from the fact that c(δ) ∈ lk(c(σi);AS), i = 1, 2, which has been proved to be a
1-sphere, that fU (S, σ1 ∩ σ2) = 1. Therefore L is necessarily a 1-sphere by the
definition of fU .

If p = {σ1, σ2, σ3, σ4} corresponds to Cf
4 we have some choices to make. For

this we set Li = lk(c(σi);AS), 1 ≤ i ≤ 4. As c(δ) ∈ L1 is a 1-sphere, it contains
exactly two of the centers c1i = c(σ1 ∩σi), i = 2, 3, 4. Assume they are c12 and c13.
Similarly, by looking at L2 we have that either c23 = c(σ2 ∩σ3) or c24 = c(σ2 ∩σ4)
belongs to L2. But c23 is ruled out by the fact that L4 is a cycle since otherwise
we would get a one-point union of three edges in Li for some 1 ≤ i ≤ 3. Hence
c24 ∈ L2, and the only choice for L4 is to have c43 = c(σ3 ∩ σ4) ∈ L4 since

170 J.C. Ciria et al.

c41 = c(σ1 ∩ σ4) would imply that L4 contains a one-point union of three edges.
Therefore AS is a combinatorial surface and hence S is a digital surface.

Conversely, assume that S is a digital surface. It will be enough to check
conditions (1)-(3) in Definition 2 for S since, under the assumption of these
properties, we get (4) as an immediate consequence of Proposition 1.

Condition (1) follows immediately from Lemma 3 above. To check condi-
tion (2), let σ, τ ∈ S be two strictly 18-adjacent 3-cells and assume that they
are not 6-connected by a third voxel in S. For the edge β = 〈α1, α2〉 = σ ∩ τ we
consider the two possible cases:

Case fU (S, β) = 0. The definition of fU shows that fU (S, α) = 1 for a vertex
α < β (fU vanishes on the other one necessarily). Then by condition (1), already
proved, and Lemma 1 it follows that α is the center of a plate in P(S, σ)∩P(S, τ).

Case fU (S, β) = 1. Then it can be readily checked that fU (S, αi) = 1 for the
two vertices α1, α2 of β, since S is a digital surface in EU . Therefore the vertices
αi are centers of plates in P(S, σ) ∩ P(S, τ) by Lemma 1.

Finally we prove condition (3). For this let σ, τ ∈ S be two 6-adjacent voxels
γ = σ ∩ τ . Then fU (S, γ) = 1 by definition of fU . As lk(c(γ);AS) is a 1-sphere
there exist exactly two faces α1, α2 < γ with fU (S, αi) = 1. If dimαi = 0 then αi

is the center of a plate in P(S, σ)∩P(S, τ) by Lemma 1. Similarly, if dimαi = 1
then the definition of fU yields that st3(αi;S) = st3(αi;R3) since it contains the
two 6-adjacent voxels σ and τ , and hence αi is the center of a square plate.

5 Final Results

As a consequence of the characterization above and Theorem 2 we get that
each 26-connected 26-presurface S separates its complement Z3 − S into two 6-
components; that is, S is a Jordan object. However, we find in this set examples
(as the 26-presurfaces S1 and S2 shown in Fig. 2(a) and 3(c), respectively) which
might be considered as pathological surfaces. More precisely, one readily checks
that the voxel τ0 ∈ S1 in Fig. 2(a) is not 6-adjacent to both 6-components of
Z3 −S1; that is, S1 is not a strongly separating object as defined in [4, 7]. Hence
the deletion of τ0 from S1 yields an object which is still Jordan (actually, S1−{τ0}
is a 26-presurface). We next state without proof a a local characterization for
the set of strongly separating 26-presurfaces.

Theorem 4. Let S ⊆ Z3 a 26-connected 26-presurface. Then S is strongly sep-
arating if and only if S is 6-thin; that is, for each σ ∈ S, the complement of S
in the 26-neighbourhood of σ, st∗

3(σ;R3)−S, contains exactly two 6-components
which are 6-adjacent to S.

The proof of this result makes use of the difference lk(c(σ);AR3)−lk(c(σ);AS)
of links in the continuous analogue to prove that the 6-components of st∗

3(σ;R3)−
S which are 6-adjacent to σ characterize the 6-components of Z3 − S, as in the
proof of the digital Index Theorem given in [2].

This result suggests the following

Local Characterization of a Maximum Set of Digital (26, 6)-Surfaces 171

Definition 3. A strongly separating 26-surface is any 26-presurface which is
also 6-thin.

Finally, we point out that the set of strongly separating 26-surfaces also
contains strictly the set of simplicity 26-surfaces since each one of them is a
strongly separating object [7] as well as the 26-presurfaces pictured in Fig. 3(a)
and (b).

References

1. R. Ayala, E. Domínguez, A.R. Francés, A. Quintero. Digital Lighting Functions.
Lecture Notes in Computer Science. 1347 (1997) 139–150.

2. R. Ayala, E. Domínguez, A.R. Francés, A. Quintero. A Digital Index Theorem.
Int. J. Patter Recog. Art. Intell. 15(7) (2001) 1–22.

3. R. Ayala, E. Domínguez, A.R. Francés, A. Quintero. Weak Lighting Functions and
Strong 26-surfaces. Theoretical Computer Science. 283 (2002) 29–66.

4. G. Bertrand, R. Malgouyres. Some Topological Properties of Surfaces in Z3. Jour.
of Mathematical Imaging and Vision. 11 (1999) 207–221.

5. J.C. Ciria, E. Domínguez, A.R. Francés. Separation Theorems for Simplicity 26-
surfaces. Lecture Notes in Computer Science. 2301 (2002) 45–56.

6. J.C. Ciria, A. De Miguel, E. Domínguez, A.R. Francés, A. Quintero. A maximum
set of (26, 6)-connected digital surfaces. Lecture Notes in Computer Science. 3322
(2004) 291–306.

7. M. Couprie, G. Bertrand. Simplicity Surfaces: a new definition of surfaces in Z3.
SPIE Vision Geometry V. 3454 (1998) 40–51.

8. T.Y. Kong, A.W. Roscoe. Continuous Analogs of Axiomatized Digital Surfaces.
Comput. Vision Graph. Image Process. 29 (1985) 60–86.

9. G. Malandain, G. Bertrand, N. Ayache. Topological Segmentation of Discrete Sur-
faces. Int. Jour. of Computer Vision. 10:2 (1993) 183–197.

10. D.G. Morgenthaler, A. Rosenfeld. Surfaces in three–dimensional Digital Images.
Inform. Control. 51 (1981) 227-247.

11. C.P. Rourke, and B.J. Sanderson. Introduction to Piecewise-Linear Topology.
Ergebnisse der Math. 69, Springer 1972.

Algorithms for the Topological Watershed

Michel Couprie, Laurent Najman, and Gilles Bertrand

Laboratoire A2SI, Groupe ESIEE,
BP99, 93162 Noisy-le-Grand Cedex France

IGM, Unité Mixte de Recherche CNRS-UMLV-ESIEE UMR 8049
{m.couprie, l.najman, g.bertrand}@esiee.fr

Abstract. The watershed transformation is an efficient tool for seg-
menting grayscale images. An original approach to the watershed [1, 4]
consists in modifying the original image by lowering some points until sta-
bility while preserving some topological properties, namely, the connec-
tivity of each lower cross-section. Such a transformation (and its result)
is called a topological watershed. In this paper, we propose quasi-linear
algorithms for computing topological watersheds. These algorithms are
proved to give correct results with respect to the definitions, and their
time complexity is analyzed.

1 Introduction

The watershed transformation was introduced as a tool for segmenting grayscale
images by S. Beucher and C. Lantuéjoul [2] in the late 70’s, and is now used as a
fundamental step in many powerful segmentation procedures. The most popular
presentation of the watershed is based on a flooding paradigm. Let us consider
a grayscale image as a topographical relief: the gray level of a pixel becomes the
altitude of a point, the basins and valleys of the relief correspond to the dark areas,
whereas the mountains and crest lines correspond to the light areas. Let us imagine
the surface of this relief being immersed in still water, with holes pierced in local
minima. Water fills up basins starting at these local minima, and dams are built
at points where waters coming from different basins would meet. As a result, the
surface is partitioned into regions or basins which are separated by dams, called
watershed lines. Efficient watershed algorithms based on immersion simulation
were proposed by L. Vincent, P. Soille [12] and F. Meyer [6, 3] in the early 90’s.

A different approach to watersheds, originally proposed by G. Bertrand and
M. Couprie [4], is developed in [1]. In this approach, we consider a transformation
called topological watershed, which modifies a map (e.g. a grayscale image)
while preserving some topological properties, namely, the connectivity of each
lower cross-section. It is proved in [1] that, among other properties, topological
watersheds satisfy a “constrast preservation” property which is, in general, not
satisfied by the most popular watershed algorithms [8].

In this paper, we study algorithms to compute topological watersheds. These
algorithms are proved [5] to give correct results with respect to the definition,
and their time complexity is analyzed.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 172–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algorithms for the Topological Watershed 173

2 Topological Notions for Weighted Graphs

Let E be a finite set, we denote by P(E) the set of all subsets of E. Throughout
this paper, Γ will denote a binary relation on E (thus, Γ ⊆ E × E), which is
reflexive (for all p in E, (p, p) ∈ Γ) and symmetric (for all p, q in E, (q, p) ∈ Γ
whenever (p, q) ∈ Γ). We say that the pair (E,Γ) is a graph, each element of E
is called a vertex or a point . We will also denote by Γ the map from E into P(E)
such that, for any p in E, Γ (p) = {q ∈ E; (p, q) ∈ Γ}. For any point p, the set
Γ (p) is called the neighborhood of p. If q ∈ Γ (p) then we say that p and q are
adjacent or that q is a neighbor of p. If X ⊆ E and q is adjacent to p for some
p ∈ X, we say that q is adjacent to X.

For applications to digital image processing, assume that E is a finite subset
of Zn (n = 2, 3), where Z denotes the set of integers. A subset X of E represents
the “object”, its complementary X = E \X represents the “background”, and Γ
corresponds to an adjacency relation between points of E. In Z2, Γ may be one
of the usual adjacency relations, for example the 4-adjacency or the 8-adjacency
in the square grid. In the sequel, the 4-adjacency is assumed.

Let (E,Γ) be a graph, let X ⊆ E, and let p0, pk ∈ X. A path from p0 to pk

in X is an ordered family (p0, p1, . . . , pk) of points of X such that pi+1 ∈ Γ (pi),
with i = 0 . . . k − 1. Let p, q ∈ X, we say that p and q are linked for X if there
exists a path from p to q in X. We say that X is connected if any p and q in
X are linked for X. We say that a subset Y of E is a (connected) component of
X if Y ⊆ X, Y is connected, and Y is maximal for these two properties. In the
sequel of the article, we will assume that E is connected.

We are interested in transformations that preserve the number of connected
components of the background. For this purpose, we introduce the notion of
W-simple point (where Wstands for watershed) in a graph. Intuitively, a point
of X is W-simple if it may be removed from X while preserving the number of
connected components of X.

Definition 1. Let X ⊆ E, let p ∈ X. We say that:
• p is a border point (for X) if p is adjacent to X;
• p is an inner point (for X) if p is not a border point for X;
• p is separating (for X) if p is adjacent to at least two components of X;
• p is W-simple (for X) if p is adjacent to exactly one component of X.

Notice that a point which is not W-simple is either an inner point or a
separating point. In Fig. 2, the points of the set X are represented by “1”s. The
points which are W-simple are circled. It may be easily seen that one cannot
locally decide whether a point is W-simple or not. Consider the points p and q
in the third row: their neighborhoods are alike, yet p is W-simple (it is adjacent
to exactly one connected component of X), and q is not, since it is adjacent to
two different connected components of X.

Now, we extend this notion to a weighted graph (E,Γ, F), where F is a map
from E to Z. A weighted graph is a model for a digital grayscale image; for any
point p ∈ E, the value F (p) represents the gray level of p. We denote by F(E)
the set composed of all maps from E to Z.

174 M. Couprie, L. Najman, and G. Bertrand

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 0 1 0 1 0 1 1

1 1 0 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

p q

X, X

Fig. 1. A set X (the 1’s) and its complement X (the 0’s). All the W-simple points are
circled

3 3 3 2 2 2 1

3 3 3 2 2 1 1

3 3 2 2 1 1 0

3 2 2 2 1 0 0

2 1 1 2 0 0 0

1 1 1 1 2 1 1

1 1 1 2 1 0 1

x

z

y r

s

F

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0 1 0

F1

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 0 1 1 1

F2

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

F3

Fig. 2. A grayscale image F and its lower sections F1, F2 and F3 (in white). The points
x, r, s are inner points, y is W-destructible (with lowest value 1), and z is separating

Definition 2. Let F ∈ F(E), let k ∈ Z.
We denote by Fk the set {p ∈ E;F (p) ≥ k}; Fk is called an upper section of F ,
and its complementary Fk is called a lower section of F .
A component c of Fk is called a (regional) minimum for F if c ∩ Fk−1 = ∅.
We denote by Γ−(p, F) the set of lower neighbors of the point p for the map F ,
that is, Γ−(p, F) = {q ∈ Γ (p);F (q) < F (p)}. When no confusion may occur, we
write Γ−(p) instead of Γ−(p, F).

Fig. 2 shows a grayscale image F and three lower sections of F : F2 is made
of two components (in white), and F3 is made of one component. The set F1 is
made of two components which are both minima of F .

Definition 3. Let F ∈ F(E), let p ∈ E, let k = F (p).
We say that p is a border point (for F) if p is a border point for Fk.
We say that p is an inner point (for F) if p is an inner point for Fk.
We say that p is separating (for F) if p is separating for Fk.
The point p is W-destructible (for F) if p is W-simple for Fk. Let v ∈ Z, v <
F (p), the point p is W-destructible with lowest value v (for F) if for any h such
that v < h ≤ F (p), p is W-simple for Fh, and if p is not W-simple for Fv.

In other words, the point p is W-destructible for F if and only if p is a border
point for F (i.e., Γ−(p) �= ∅) and all the points in Γ−(p) belong to the same
connected component of Fk, with k = F (p). In Fig. 2, the points x, r, s are inner
points, y is W-destructible (with lowest value 1), and z is separating.

Algorithms for the Topological Watershed 175

Let F ∈ F(E), let p ∈ E, let v ∈ Z such that v < F (p), we denote by [F \p ↓ v]
the element of F(E) such that [F \ p ↓ v](p) = v and [F \ p ↓ v](q) = F (q) for
all q ∈ E \ {p}. Informally, it means that the only difference between the map
F and the map [F \ p ↓ v], is that the point p has been lowered down to the
value v. We also write [F \ p] = [F \ p ↓ v] when v = F (p) − 1.

If we consider F ′ = [F \ p ↓ v], it may be easily seen that for any h in Z,
the number of connected components of F ′

h equals the number of connected
components of Fh. That is to say, the value of a W-destructible point may be
lowered by one or down to its lowest value without changing the number of
connected components of any lower section of F .

Definition 4. Let F ∈ F(E). We say that G ∈ F(E) is a W-thinning of F if
i) G = F, or if
ii) there exists a map H which is a W-thinning of F and there exists a W-
destructible point p for H such that G = [H \ p].
We say that G is a (topological) watershed of F if G is a W-thinning of F and
if there is no W-destructible point for G.

Let F ∈ F(E), let p ∈ E, let v ∈ Z. It may be easily seen that, if p is W-
destructible with lowest value v, then [F \ p ↓ v] is a W-thinning of F and p is
not W-destructible for [F \ p ↓ v] ; and that the converse is also true.

In other words, one can obtain a W-thinning of a map F by iteratively se-
lecting a W-destructible point and lowering it by one, or directly down to its
lowest value. If this process is repeated until stability, one obtains a topological
watershed of F . Notice that the choice of the W-destructible point is not neces-
sarily unique at each step, thus, in general, there may exist several topological
watersheds for the same map.

In Fig. 3, we present an image 3a and a topological watershed 3b of 3a.
Note that in 3b, the minima of 3a have been spread and are now separated
from each other by a “thin line”; nevertheless, their number and values have
been preserved. Fig. 3c shows a W-thinning of 3a which is not a topological
watershed of 3a (there are still some W-destructible points).

Let us consider a point p ∈ E which is not W-destructible for F ∈ F(E).
Three cases may be distinguished. From Def. 3, such a point is either an inner
point or a separating point for F . Furthermore, if p is an inner point, then
either p belongs to a minimum of F or not.

On the other hand, if p is W-destructible for F , then p is not W-destructible
for [F \p ↓ v] where v is the lowest value of p. Again, we can distinguish the same
three possibilities for the status of p with respect to [F \ p ↓ v]. The following
definition formalizes these observations (S stands for separating, M for minimum
and P for plateau).

Definition 5. Let F ∈ F(E), let p ∈ E, p not W-destructible for F .
We say that p is an S-point (for F) if p is separating for F .
We say that p is an M-point (for F) if p belongs to a minimum of F .
We say that p is an P-point (for F) if p is an inner point for F which does not
belong to a minimum of F .

176 M. Couprie, L. Najman, and G. Bertrand

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 11 11 4 4 3 0 5 11 11 3 2 0

0 3 12 7 5 11 6 6 7 11 5 7 12 4 0

0 15 7 2 3 5 11 11 11 5 3 7 7 15 0

0 3 14 3 5 11 8 7 8 11 5 7 14 5 0

0 1 2 11 11 3 2 2 2 4 11 13 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 0 0 0 0 0 11 11 0 0 0

0 0 11 2 2 11 0 0 0 11 1 1 11 0 0

0 11 2 2 2 2 11 0 11 1 1 1 1 11 0

0 0 11 2 2 11 0 0 0 11 1 1 11 0 0

0 0 0 11 11 0 0 0 0 0 11 11 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 11 11 0 0 0 0 0 11 11 0 0 0

0 0 12 2 2 11 0 0 0 11 1 1 12 0 0

0 15 2 2 2 2 11 0 11 1 1 1 1 15 0

0 0 14 2 2 11 0 0 0 11 1 1 14 0 0

0 0 0 11 11 0 0 0 0 0 11 13 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d

Fig. 3. a: original image; b: a topological watershed of a; c: a W-thinning of a which
is also an M-watershed of a (see Sec. 3); d: a W-crest of a (see Sec. 3). In a, we have
circled six points which have different types (see Def. 5). From left to right: S̃-point (12),
S-point (11), M̃-point (4), P̃-point (6), M-point (0), P-point (7).

Let q be a point which is W-destructible for F , let v be its lowest value.
We say that q is an S̃-point (for F) if q is an S-point for [F \ q ↓ v].

Algorithms for the Topological Watershed 177

We say that q is an M̃-point (for F) if q is an M-point for [F \ q ↓ v].
We say that q is a P̃-point (for F) if q is a P-point for [F \ q ↓ v].

In Fig. 3a, we have circled six points which are representative of all the
possible types.

The components of the lower sections of a map may be organized, thanks
to the inclusion relation, in a tree structure that we call component tree (see
the bibliography of [7] for a list of references). In [5], we propose and prove
a characterization of the W-destructible points, which may be checked locally
and efficiently implemented thanks the component tree. In [7], we introduce a
new algorithm, using Tarjan’s union-find procedure [10], to build the component
tree of any weighted graph in quasi-linear time, that is, in O(n × α(n)) where
n is the size of the graph (number of vertices + number of arcs) and α(n) is
a function which grows extremely slowly with n (we have α(1080) ≈ 4). For a
precise definition of α, see [10].

Furthermore, for applications to digital image processing, where each point
has a fixed (and small) number of neighbors, we can consider that testing whether
a point is W-destructible and computing its lowest value can be done in constant
time thanks to the component tree.

3 M-Thinning and Binary Watershed Algorithm

The outline of a topological watershed algorithm is the following:

Repeat Until Stability
Select a W-destructible point p, using a certain criterion
Lower the value of p

It can be seen that, even if a W-destructible point is lowered down to its lowest
value, it may again become W-destructible in further steps of the W-thinning
process, due to the lowering of some of its neighbors. For example, the point at
level 6 circled in white in Fig. 3a is W-destructible with lowest value 4. If we
lower this point down to 4, we will have to lower it again, after the lowering of
its neighbor at level 4 down to 3 or 0.

In order to ensure a linear complexity, we must avoid multiple selections of
the same point during the execution of the algorithm. The following properties
provide selection criteria which guarantee that a point lowered once will never
be W-destructible again during the W-thinning process.

The first criterion concerns points which may be lowered down to the value
of a neighbor which belongs to a minimum (i.e., M̃-points). If an M̃-point is
lowered down to its lowest value, then we say that the point is M-lowered . The
aim of theorem 1 is to show that, if M̃-points are sequentially selected and M-
lowered, and if we continue this process until stability, giving a result G, then it
is not possible that a W-thinning of G contains any M̃-point. Since, obviously, a
point which has been M-lowered will never be considered again in a W-thinning
algorithm, we obtain an “M-thinning algorithm” which considers each point at

178 M. Couprie, L. Najman, and G. Bertrand

most once, and produces a result in which the minima cannot be extended by
further W-thinning.

Definition 6. Let F,G ∈ F(E), we say that G is an M-thinning of F if G = F
or if G can be obtained from F by sequentially M-lowering some M̃-points. We
say that G is an M-watershed of F if G is a M-thinning of F and has no M̃-point.

Theorem 1. Let F ∈ F(E), let G be an M-watershed of F . Any W-thinning of
G has exactly the same minima as G.

See [5] for a proof. Let F be a map and let G be a topological watershed of F ,
the set of points which do not belong to any regional minimum of G is called a
W-crest of F (see Fig. 3d). A W-crest of F corresponds to a “binary watershed”
of F . A corollary of this theorem is that the set of points which do not belong to
any minimum of an M-watershed of F is always a W-crest of F . Thus, we can
compute a W-crest (or binary watershed) by only lowering M̃-points. In Fig. 3c,
we see an M-watershed of 3a.

In the following algorithm, we introduce a priority function μ which is used
to select the next M̃-point. The priority function μ associates to each point p a
positive integer μ(p), called the priority of p. This function is used for the man-
agement of a priority queue, a data structure which allows one to perform, on a
set of points, an arbitrary sequence of the two following operations (L denotes
a priority queue and p a point):
AddPrioQueue(L, p, μ(p)): store p with the priority μ(p) into the queue L;
ExtractPrioQueue(L): remove and return a point which has the minimal pri-
ority value among those stored in L (if several points fulfill this condition, an
arbitrary choice is made).

The choice and the interest of the priority function will be discussed after-
wards, but notice that whatever the chosen priority function (for example a
constant function), the output of the procedure will always be an M-watershed
of the input.

Given a map F and a point p, the procedure call M-destructible(F , p) (resp.
W-destructible(F , p)) returns in constant time (see end of Sec. 2) the lowest
value for p if p is an M̃-point (resp. a W-destructible point), or ∞ otherwise.

Procedure M-watershed (Input F , μ ; Output F)
01. L ← EmptyPrioQueue
02. For All p ∈ E such that M-destructible(F , p) 	= ∞ Do
03. AddPrioQueue(L, p, μ(p)) ; mark p
04. While L 	= EmptyPrioQueue Do
05. p ← ExtractPrioQueue(L) ; unmark p
06. If M-destructible(F , p) 	= ∞ Then
07. F (p) ← M-destructible(F , p)
08. For All q ∈ Γ (p), q 	= p, q not marked Do
09. If M-destructible(F , q) 	= ∞ Then
10. AddPrioQueue(L, q, μ(q)) ; mark q

Algorithms for the Topological Watershed 179

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 4 4 4 4 4 4 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

a b
1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 10 10 10 10 10 10 10 0

1 4 4 4 4 4 4 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

1 9 10 8 7 6 5 4 0

c d

Fig. 4. a, b: two images with a possible W-crest (circled) computed thanks to procedure
M-watershed with a constant priority function. c, d: the same two images with the
W-crest (circled) computed thanks to procedure M-watershed with the lexicographic
priority function

The following property is a consequence of results proved in [5] and of the
fact that, obviously, each point is selected at most once by this algorithm.

Property 2. Whatever the chosen priority function, the output of Procedure
M-watershed is an M-watershed of the input.
Let n and m denote respectively the number of vertices and the number of arcs in
the graph (E,Γ). The time complexity of Procedure M-watershed is in O(n +
m) + k, where k is the overall complexity for the management of the priority
queue.

We introduced the priority function and the priority queue in order to take
into account some geometrical criteria. For example, with a constant prior-
ity function, plateaux or even domes located between basins may be thinned
in different ways, depending on the arbitrary choices that are allowed by the
calls to ExtractPrioQueue with this particular priority function (line 05). See
Fig. 4 a, b for a possible result of procedure M-watershed with a constant
priority function.

In order to “guide” the watershed set towards the highest locations of the
domes and the “center” of the plateaux, we choose a lexicographic priority func-
tion μ described below.

Let F ∈ F(E), let d be a distance on E (e.g., the Euclidean distance), let
p ∈ E. We denote by D(p) be the minimal distance between p and any point q
strictly lower than p, that is, D(p) = min{d(p, q);F (q) < F (p)}.

It is easy to build a function μ such that, for any p, q in E:

– if F (p) < F (q) then μ(p) > μ(q);
– if F (p) = F (q) and D(p) ≤ D(q) then μ(p) ≥ μ(q).

See Fig. 4 c, d for the result of M-watershed with such a priority function.

180 M. Couprie, L. Najman, and G. Bertrand

0 0 9 2 2

0 0 9 2 2

4 4 6 9 2

1 1 9 2 2

1 1 9 2 2

0 0 0 30 4 4

40 0 30 3 30 4

1 40 31 30 4 4

1 40 32 31 35 35

1 1 40 35 2 2

1 1 40 2 2 2

Fig. 5. Examples of W-destructible points in an MS-watershed which are neither M̃-
points nor S̃-points: the point at 6 in the image on the left, the points at 31 and 32 in
the image on the right

The values of such a priority function may be pre-computed by a linear-time
algorithm, see for example algorithm 4.5 of [9] which is called lower completion
algorithm. The efficient management of priority queues is a well studied prob-
lem, and efficient solutions exist (see e.g. [11]). Furthermore, in most current
situations of image analysis, where the number of possible values for the priority
function is limited and the number of neighbors of a point is a small constant,
specific linear algorithms can be used, avoiding the use of a priority queue. An
example of such a linear algorithm is given in the next section, with algorithm
TopologicalWatershed.

4 Watershed Algorithm

After iteratively lowering M̃-points until stability, we have to process the other
W-destructible points in order to get a topological watershed. Let F ∈ F(E),
let us call an MS-watershed of F a map obtained from F by iteratively lowering
M̃-points and S̃-points until stability. We could think that all P̃-points will be
eventually changed to M̃-points and then M-lowered in such a process, as it is
the case for images like Fig. 3a. But the examples of Fig. 5 show that it is not
always the case, in other words, an MS-watershed of F is not always a topological
watershed of F . Furthermore, there may exist thick regions made of P̃-points in
an MS-watershed, and although M̃-points and S̃-points may be lowered directly
down to their lowest possible value, we have no such guarantee for the P̃-points
(see theorem 5 of [5]).

Thus, we must propose a criterion for the selection of the remaining W-
destructible points, in order to avoid multiple selections of the same point. The
idea is to give the greatest priority to a W-destructible point which may be
lowered down to the lowest possible value. We prove that an algorithm which
uses this strategy never selects the same point twice. A priority queue could be
used, as in the previous section, to select W-destructible points in the appropriate
order. Here, we propose a specific linear watershed algorithm which may be used
when the grayscale range is small. Let F ∈ F(E), let kmin = min{F (p); p ∈ E}
and kmax = max{F (p); p ∈ E}.

Algorithms for the Topological Watershed 181

Procedure TopologicalWatershed (Input F ; Output F)
01. For k From kmin To kmax Do Lk ← ∅
02. For All p ∈ E Do
03. i ← W-Destructible(F , p)
04. If i 	= ∞ Then
05. Li ← Li ∪ {p} ; K(p) ← i
06. For k = kmin To kmax Do
07. While ∃p ∈ Lk Do
08. Lk = Lk \ {p}
09. If K(p) = k Then
10. F (p) ← k
11. For All q ∈ Γ (p), k < F (q) Do
12. i ← W-Destructible(F , q)
13. If i = ∞ Then K(q) ← ∞
14. Else If K(q) 	= i Then
15. Li ← Li ∪ {q} ; K(q) ← i

We have the following guarantees:

Property 3. In algorithm TopologicalWatershed,
i) at the end of the execution, F is a topological watershed of the input map;
ii) let n and m denote respectively the number of vertices and the number of arcs
in the graph (E,Γ). If kmax − kmin ≤ n, then the time complexity of the algorithm
is in O(n + m).

As discussed in the previous section, this algorithm provides topological guar-
antees but does not care about geometrical criteria. If we want to take such crite-
ria into account, we can use first the procedure M-watershed with the priority
function described at the end of section 3, and then the procedure Topologi-
calWatershed.

5 Watershed from Markers

In many applications, instead of finding a separation between the minima of
the input function, we need to separate the components of a given set of points
called the marker . Let us illustrate how to reach this goal using the topological
watershed, following a classical approach based on reconstruction.

Fig. 6 illustrates the outline of the whole procedure. Fig. 6a shows the input
data, function F and marker M . Fig. 6b: a function G is generated, such that
G(x) = kmin for all x ∈ M , and G(x) = kmax for all x /∈ M . The function
F ′ = min(F,G) is computed. Fig. 6c: we compute the morphological geodesic
reconstruction G′ of G over F ′. See [13] for a description of this operator, which
can be efficiently implemented thanks to the component tree. Notice that, by
construction, each minimum of G′ contains a component of M . Fig. 6d: finally,
an M-watershed W of G′ is extracted, hence, a W-crest C.

182 M. Couprie, L. Najman, and G. Bertrand

M

F

G

F’

M
a b

G’

M

F’

C
W

c d

Fig. 6. Outline of a topological watershed-from-markers procedure

References

1. G. Bertrand, “On topological watersheds”, Journal of Mathematical Imaging and
Vision, Vol. 22, pp. 217-230, 2005.

2. S. Beucher, Ch. Lantuéjoul, “Use of watersheds in contour detection”, Proc.
Int. Workshop on Image Processing, Real-Time Edge and Motion Detec-
tion/Estimation, Rennes, France, 1979.

3. S. Beucher, F. Meyer, “The morphological approach to segmentation: the water-
shed transformation”, Mathematical Morphology in Image Processing, Chap. 12,
pp. 433-481, Dougherty Ed., Marcel Dekker, 1993.

4. M. Couprie, G. Bertrand, “Topological grayscale watershed transformation”, Proc.
SPIE Vision Geometry VI , Vol. 3168, pp. 136-146, 1997.

5. M. Couprie, L. Najman, G. Bertrand, “Quasi-linear algorithms for the topological
watershed”, Journal of Mathematical Imaging and Vision, Vol. 22, pp. 231-249,
2005.

6. F. Meyer, “Un algorithme optimal de ligne de partage des eaux”, Proc. 8th
Conf. Reconnaissance des Formes et Intelligence Artificielle, Vol. 2, pp. 847-859,
AFCET Ed., Lyon, 1991.

7. L. Najman, M. Couprie, “Quasi-linear algorithm for the component tree”, Proc.
SPIE Vision Geometry XII, Vol. 5300, pp. 98-107, 2004.

8. L. Najman, M. Couprie, G. Bertrand, “Watersheds, extension maps, and the emer-
gence paradigm”, report IGM2004-04 of the Institut Gaspard Monge (University
of Marne-la-Vallée), to appear in Discrete Applied Mathematics, 2004.

9. J. Roerdink, A. Meijster, “The watershed transform: definitions, algorithms and
parallelization strategies”, Fundamenta Informaticae, Vol. 41, pp. 187-228, 2000.

10. R.E. Tarjan, “Disjoint sets” Data Structures and Network Algorithms, Chap. 2,
pp. 23-31, SIAM, 1978.

11. M. Thorup, “On RAM priority queues”, 7th ACM-SIAM Symposium on Discrete
Algorithms, pp. 59-67, 1996.

12. L. Vincent, P. Soille, “Watersheds in digital spaces: an efficient algorithm based on
immersion simulations”, IEEE Trans. on PAMI, Vol. 13, No. 6, pp. 583-598, 1991.

13. L. Vincent, “Morphological Grayscale Reconstruction in Image Analysis: Applica-
tion and Efficient Algorithms”, IEEE Trans. on PAMI, Vol. 2, No. 2, pp. 176-201,
1993.

The Class of Simple Cube-Curves Whose MLPs
Cannot Have Vertices at Grid Points

Fajie Li and Reinhard Klette

CITR, University of Auckland, Tamaki Campus,
Building 731, Auckland, New Zealand

Abstract. We consider simple cube-curves in the orthogonal 3D grid of
cells. The union of all cells contained in such a curve (also called the tube
of this curve) is a polyhedrally bounded set. The curve’s length is defined
to be that of the minimum-length polygonal curve (MLP) fully contained
and complete in the tube of the curve. So far only one general algorithm
called rubber-band algorithm was known for the approximative calcula-
tion of such a MLP. There is an open problem which is related to the
design of algorithms for calculation a 3D MLP of a cube-curve: Is there a
simple cube-curve such that none of the vertices of its 3D MLP is a grid
vertex? This paper constructs an example of such a simple cube-curve.
We also characterize this class of cube-curves.

1 Introduction

The analysis of cube-curves is related to 3D image data analysis. A cube-curve is,
for example, the result of a digitization process which maps a curve-like object
into a union S of face-connected closed cubes. The length of a simple cube-
curve in 3D Euclidean space is based on the calculation of the minimal length
polygonal curve (MLP) in a polyhedrally bounded compact set [3, 4].

The computation of the length of a simple cube-curve in 3D Euclidean space
was a subject in [5]. But the method may fail for specific curves. [1] presents an
algorithm (rubber-band algorithm) for computing the approximating MLP in S
with measured time complexity in O(n), where n is the number of grid cubes of
the given cube-curve.

The difficulty of the computation of the MLP in 3D may be illustrated by
the fact that the Euclidean shortest path problem (i.e., find a shortest obstacle-
avoiding path from source point to target point, for a given finite collection
of polyhedral obstacles in 3D space and a given source and a target point) is
known to be NP-complete [7]. However, there are some algorithms solving the
approximate Euclidean shortest path problem in 3D with polynomial-time, see
[8]. The Rubber-band algorithm is not yet proved to be always convergent to
the correct 3D-MLP.

Recently, [6] developed of an algorithm for calculation of the correct MLP
(with proof) for a special class cube-curves. The main idea is to discompose the
cube-curve into some arcs by finding some “end angles” (see Definition 4 below).

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 183–194, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 F. Li and R. Klette

There is an open problem (see [2–page 406]) which is related to designing
algorithms for the calculation of the 3D MLP of a cube-curve: It there a simple
cube-curve such that none of the vertices of its 3D MLP is a grid vertex? This
paper constructs an example of such a simple cube-curve, and generalizes this by
characterizing the class of all of those cube-curves. Furthermore it is true that
these cube-curves do not have any end angle; and this means that we cannot
use the MLP algorithm proposed in [6] which is provable correct. This is the
basic importance of the given result: we show the existence of cube-curves which
require further algorithmic studies.

Following [1], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of
a grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices as its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n + 1), if ci

⋂
ck �= φ then either |i− k| = 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i − k| ≥ 3 (mod n + 1) and ci

⋂
ck is a vertex.

A tube g is the union of all cubes contained in a cube-curve g. A tube is
a compact set in R3, its frontier defines a polyhedron, and it is homeomorphic
with a torus in case of a simple cube-curve. A curve in R3 is complete in g iff
it has a nonempty intersection with every cube contained in g. Following [3, 4],
we define:

Definition 1. A minimum-length polygon (MLP) of a simple cube-curve g is
a shortest simple curve P which is contained and complete in tube g. The length
of a simple cube-curve g is defined to be the length l(P) of an MLP P of g.

It turns out that such a shortest simple curve P is always a polygonal curve,
and it is uniquely defined if the cube-curve is not only contained in a single layer
of cubes of the 3D grid (see [3, 4]). If it is contained in one layer, then the MLP
is uniquely defined up to a translation orthogonal to that layer. We speak about
the MLP of a simple cube-curve.

A critical edge of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g. Figure 1 shows all the critical edges
of a simple cube-curve.

Definition 2. If e is a critical edge of g and l is a straight line such that e ⊂ l,
then l is called a critical line of e in g or critical line for short.

Definition 3. Let e be a critical edge of g. Let P1 and P2 be the two end points
of e. If one of coordinates of P1 is less than that of P2, then P1 is called the first
end point of e in g. Otherwise P1 is called the second end point of e in g.

Definition 4. Assume a simple cube-curve g and a triple of consecutive critical
edges e1, e2, and e3 such that ei ⊥ ej, for all i, j = 1, 2, 3 with i �= j. If e2 is
parallel to the x-axis (y-axis, or z-axis) implies the x-coordinates (y-coordinates,

The Class of Simple Cube-Curves 185

or z-coordinates) of two vertices (i.e., end points) of e1 and e3 are equal, then
we say that e1, e2 and e3 form an end angle, and g has an end angle, denoted
by ∠(e1, e2, e3); otherwise we say that e1, e2 and e3 form a middle angle, and g
has a middle angle.

Figure 1 shows a simple cube-curve which has 5 end angles ∠(e21, e0, e1),
∠(e4, e5, e6), ∠(e6, e7, e8), ∠(e14, e15, e16)), ∠(e16, e17, e18), and many middle an-
gles (e.g., ∠(e0, e1, e2), ∠(e1, e2, e3), or ∠(e2, e3, e4)).

Definition 5. A simple cube-curve g is called first class iff each critical edge of
g contains exactly one vertex of the MLP of g.

We can simply detect a simple cube-curve is first class or not by running
rubber band algorithm: the curve is first class iff option (O1) (see [1]) does not
occur.

This paper focuses on first-class simple cube-curves because the general sim-
ple cube-curves require further studies.

Definition 6. Let S ⊆ R3. The set {(x, y, 0) : ∃z(z ∈ R ∧ (x, y, z) ∈ S)} is the
xy-projection of S, or projection of S for short. Analogously we define the yz-
or xz-projection of S.

Definition 7. If e1, e2, . . ., em are consecutive critical edges of a cube-curve g
and e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1, where i equals 1, 2, . . ., and m − 1,
m ≥ 2, then {e1, e2, . . ., em } is a set of maximal parallel critical edges of g,
and critical edge e0 or em+1 is called adjacent to this set.

Figure 1 shows a simple cube-curve which has 2 maximal parallel critical
edge sets: {e11, e12} and {e18, e19, e20, e21}. The two adjacent critical edges of

Fig. 1. Example of a first-class simple cube-curve which has middle and end angles

186 F. Li and R. Klette

{e11, e12} are e10 and e13, they are on two different grid planes. The two adjacent
critical edges of {e18, e19, e20, e21} are e17 and e0, they are on two different grid
planes as well.

The paper is organized as follows: Section 2 describes theoretical fundamen-
tals for constructing our example. Section 3 presents the example. Section 4 gives
the conclusions.

2 Basics

We provide mathematical fundamentals used for constructing a simple cube-
curve such that none of the vertices of its 3D MLP is a grid vertex. We start
with citing a basic theorem from [1]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

Let de(p, q) be the Euclidean distance between points p and q.
Let e0, e1, e2, . . ., em and em+1 be m+2 consecutive critical edges in a simple

cube-curve, and let l0, l1, l2, . . ., lm and lm+1 be the corresponding critical lines.
We express a point pi(ti) = (xi +kxi

ti, yi +kyi
ti, zi +kzi

ti) on li in general form,
with ti ∈ R, where i equals 0, 1, . . ., or m + 1.

In the following, p(ti) will be denoted by pi for short, where i equals 0, 1, . . .,
or m + 1.

Lemma 1. If e1 ⊥ e2, then ∂de(p1,p2)
∂t2

can be written as (t2 −α)β, where β > 0,
and β is a function of t1 and t2, α is 0 if e1 and the first end point of e2 are on
the same grid plane, and α is 1 otherwise.

Proof. Without loss of generality, we can assume that e2 is parallel to z-axis.
In this case, the parallel projection (denoted by g′(e1, e2)) of all of g’s cubes,
contained between e1 and e2, is illustrated in Figure 2, where AB is the projective
image of e1, and C is that of one of the end points of e2.
Case 1. e1 and the first end point of e2 are on the same grid plane. Let the two
end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points of e1 are

Fig. 2. Illustration of the proof of Lemma 1

The Class of Simple Cube-Curves 187

(a− 1, b + k, c) and (a, b + k, c). Then the coordinates of p1 and p2 are (a− 1 +
t1, b+k, c) and (a, b, c+ t2) respectively, and de(p1, p2) =

√
(t1 − 1)2 + k2 + t2

2.
Therefore ∂de(p1,p2)

∂t2
= t2√

(t1−1)2+k2+t22
. Let α = 0 and β = 1√

(t1−1)2+k2+t22
.

This proves the lemma for Case 1.

Case 2. e1 and the first end point of e2 are on different grid planes (i.e., e1 and
the second end point of e2 are on the same grid plane). Let the two end points of
e2 be (a, b, c) and (a, b, c+1). Then the two end points of e1 are (a−1, b+k, c+1)
and (a, b+k, c+1). Then the coordinates of p1 and p2 are (a−1+ t1, b+k, c+1)
and (a, b, c + t2) respectively, and de(p1, p2) =

√
(t1 − 1)2 + k2 + (t2 − 1)2.

Therefore ∂de(p1,p2)
∂t2

= t2−1√
(t1−1)2+k2+(t2−1)2

. Let α = 1 and

β = 1√
(t1−1)2+k2+(t2−1)2

. This proves the lemma for Case 2. �

Lemma 2. If e1 ‖ e2, then ∂de(p1,p2)
∂t2

can be written as (t2 − t1)β, where β > 0,
and β is a function of t1 and t2

Proof. Without loss of generality, we can assume that e2 is parallel to z-axis.
In this case, the parallel projection (denoted by g′(e1, e2)) of all of g’s cubes
contained between e1 and e2 is illustrated in Figure 3, where A is the projective
image of one of the end points of e1, and B is that of one of the end points of e2.
Case 1. e1 and e2 are on the same grid plane. Let the two end points of e2
be (a, b, c) and (a, b, c + 1). Then the two end points of e1 are (a, b + k, c) and
(a, b + k, c + 1). Then the coordinates of p1 and p2 are (a, b + k, c + t1) and
(a, b, c + t2) respectively, and de(p1, p2) =

√
(t2 − t1)2 + k2.

Therefore ∂de(p1,p2)
∂t2

= t2−t1√
(t2−t1)2+k2

. Let β = 1√
(t2−t1)2+k2

. This proves the

lemma for Case 1.
Case 2. e1 and e2 are on different grid planes. Let the two end points of e2 be
(a, b, c) and (a, b, c + 1). Then the two end points of e1 are (a − 1, b + k, c) and

Fig. 3. Illustration of the proof of Lemma 2

188 F. Li and R. Klette

(a − 1, b + k, c + 1). Then the coordinates of p1 and p2 are (a − 1, b + k, c + t1)
and (a, b, c + t2) respectively, and de(p1, p2) =

√
(t2 − t1)2 + k2 + 1.

Therefore ∂de(p1,p2)
∂t2

= t2−t1√
(t2−t1)2+k2+1

. Let β = 1√
(t2−t1)2+k2+1

. This proves

the lemma for Case 2. �

This Lemma will be used when we prove Lemma 6 later.
Let di = de(pi−1, pi) + de(pi, pi+1), where i equals 1, 2, . . ., or m.

Theorem 2. If ei ⊥ ej, where i, j = 1, 2, 3 and i �= j, then e1, e2 and e3 form
an end angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a unique root 0 or 1.

Proof. Without loss of generality, we can assume that e2 is parallel to z-axis.
(A) If e1, e2 and e3 form an end angle, then by Definition 4, the z-coordinates

of two end points of e1 and e3 are equal.
Case A1. e1, e3 and the first end point of e2 are on the same grid plane. By
Lemma 1, ∂(de(p1,p2)

∂t2
= (t2 − α1)β1, where α1 = 0 and β1 > 0, and ∂(de(p2,p3)

∂t2
=

(t2 − α2)β2, where α2 = 0 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

=

t2(β1 + β2). Therefore the equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0 has a unique root
t2 = 0.

Case A2. e1, e3 and the second end point of e2 are on the same grid plane. By
Lemma 1, ∂(de(p1,p2)

∂t2
= (t2 − α1)β1, where α1 = 1 and β1 > 0, and ∂(de(p2,p3)

∂t2
=

(t2 − α2)β2, where α2 = 1 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

=

(t2 − 1)(β1 +β2). Therefore, equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0 has a unique root
t2 = 1.

(B) Conversely, if equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0 has a unique root 0 or
1, then e1, e2 and e3 form an end angle. Otherwise, e1, e2 and e3 form a middle
angle. By Definition 4, the z-coordinates of two end points of e1 are not equal to
z-coordinates of two end points of e3 (Note: Without loss of generality, we can
assume that e2 ‖ z-axis.). So e1 and e3 are not on the same grid plane.

Case B1. e1 and the first end point of e2 are on the same grid plane, while
e3 and the second end point of e2 are on the same grid plane. By Lemma 1,
∂(de(p1,p2)

∂t2
= (t2−α1)β1, where α1 = 0 and β1 > 0, while ∂(de(p2,p3)

∂t2
= (t2−α2)β2,

where α2 = 1 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

= t2β1 + (t2 − 1)β2.

Therefore t2 = 0 or 1 is not a root of the equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0. This
is a contradiction.

Case B2. e1 and the second end point of e2 are on the same grid plane, while
e3 and the first end point of e2 are on the same grid plane. By Lemma 1,
∂(de(p1,p2)

∂t2
= (t2−α1)β1, where α1 = 1 and β1 > 0, while ∂(de(p2,p3)

∂t2
= (t2−α2)β2,

where α2 = 0 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

= (t2 − 1)β1 + t2β2.

Therefore, t2 = 0 or 1 is not a root of the equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0. This
is a contradiction as well. �

The Class of Simple Cube-Curves 189

Theorem 3. If ei ⊥ ej, where i, j = 1, 2, 3 and i �= j, then e1, e2 and e3 form
a middle angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a root t20 such that

0 < t20 < 1.

Proof. If e1, e2 and e3 form a middle angle, then by Definition 4, e1, e2 and e3
do not form an end angle. By Theorem 2, 0 or 1 is not a root of the equation
∂(de(p1,p2)+de(p2,p3))

∂t2
= 0. By Lemma 1, ∂(de(p1,p2)+de(p2,p3))

∂t2
= (t2 −α1)β1 +(t2 −

α2)β2, where α1, α2 are 0 or 1, β1 > 0 is a function of t1 and t2, and β2 > 0
is a function of t2 and t3. So α1 �= α2. (i.e., α1 = 0 and α2 = 1 or α1 = 1 and
α2 = 0). Therefore the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a root t20 such that

0 < t20 < 1.
Conversely, if the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a root t20 such that

0 < t20 < 1, then by Theorem 2, e1, e2 and e3 do not form an end angle. By
Definition 4, e1, e2 and e3 do form a middle angle. �

Assume that e0 ⊥ e1, e2 ⊥ e3, and e1 ‖ e2. Assume that p(ti0) is a vertex of the
MLP of g, where i equals 1 or 2. Then we have

Lemma 3. If e0, e3 and the first end point of e1 are on the same grid plane,
and ti0 is a root of ∂di

∂ti
= 0, then ti0 = 0, where i equals 1 or 2.

Proof. From p0(t0)p1(0) ⊥ e1 it follows that

de(p0(t0)p1(0)) = min{de(p0(t0), p1(t1)) : t1 ∈ [0, 1]}

(see Figure 4). Analogously, we have de(p2(0)p3(t3)) = min{de(p2(t2), p3(t3)) :
t2 ∈ [0, 1]} and de(p1(0)p2(0)) = min{de(p1(t1), p2(t2)) : t1, t2 ∈ [0, 1]}. There-
fore we have

min{de(p0(t0), p1(t1)) + de(p1(t1), p2(t2)) + de(p2(t2), p3(t3)) : t1, t2 ∈ [0, 1]}
≥ de(p0(t0), p1(0)) + de(p1(0), p2(0)) + de(p2(0), p3(t3)) �

Assume that we have e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1, (i.e., the set {e1,
e2, . . ., em } is a set of maximal parallel critical edges of g, and e0 or em+1 is an
adjacent critical edge of this set). Furthermore, let p(ti0) be a vertex of the MLP
of g, where i = 1, 2, . . ., m− 1. Analogously, we have the following two lemmas:

Fig. 4. Illustration of the proof of Lemma 3

190 F. Li and R. Klette

Lemma 4. If e0, em+1 and the first point of e1 are on the same grid plane, and
ti0 is a root of ∂di

∂ti
= 0, then ti0 = 0, where i = 1, 2, . . ., m.

Lemma 5. If e0, em+1 and the second end point of e1 are on the same grid
plane, and ti0 is a root of ∂di

∂ti
= 0, then ti0 = 1, where i = 1, 2, . . ., m.

Lemma 6. If e0 and em+1 are on different grid planes, and ti0 is a root of
∂di

∂ti
= 0, where i = 1, 2, . . ., m. Then 0 < t1 < t2 < . . . < tm < 1.

Proof. Assume that e0 and the first end point of e1 are on the same grid plane,
and em+1 and the second end point of e1 are on the same grid plane. Then
by Lemmas 1 and 2, ∂di

∂ti
, where i = 1, 2, . . ., m, have the following forms:

∂d1
∂t1

= t1b11 + (t1 − t2)b12 ,
∂d2
∂t2

= (t2 − t1)b21 + (t2 − t3)b22 ,
∂d3
∂t3

= (t3 − t2)b31 +

(t3 − t4)b32 , . . .,
∂dm−1
∂tm−1

= (tm−1 − tm−2)bm−11 + (tm−1 − tm)bm−12 , and ∂dm

∂tm
=

(tm − tm−1)bm1 +(tm −1)bm2 , where bi1 > 0, and bi1 is a function of ti and ti−1,
and bi2 > 0, and bi2 is a function of ti and ti+1, i = 1, 2, . . ., m.

If t10 < 0, then by ∂d1
∂t1

= 0, we have t10b11 + (t10 − t20)b12 = 0. Since b11 > 0
and b12 > 0, so we have t10 −t20 > 0, (i.e., t10 > t20). Analogously, by ∂d2

∂t2
= 0, so

(t20 − t10)b21 + (t20 − t30)b22 = 0. Then we have t20 > t30 . Analogously, we have
t30 > t40 , . . ., tm−10 > tm0 . Therefore, by ∂dm

∂tm
= (tm − tm−1)bm1 + (tm − 1)bm2 ,

we have tm0 − 1 > 0. So we have 0 > t10 > t20 > t30 > . . . > tm0 > 1. This is a
contradiction.

If t10 = 0, then by ∂d1
∂t1

= 0 we have t20 = 0. Analogously, by ∂d2
∂t2

= 0
we have t30 = 0. Analogously, we have t40 = 0, . . ., tm0 = 0. But, by ∂dm

∂tm
=

(tm − tm−1)bm1 + (tm − 1)bm2 , we have ∂dm

∂tm
= (tm − 1)bm2 = −bm2 < 0. This is

in contradiction to ∂dm

∂tm
= 0.

If t10 ≥ 1, then by ∂d1
∂t1

= 0, we have t10b11 + (t10 − t20)b12 = 0. Due to
b11 > 0 and b12 > 0 we have t10 − t20 < 0, (i.e., t10 < t20). Analogously,
by ∂d2

∂t2
= 0 it follows that (t20 − t10)b21 + (t20 − t30)b22 = 0. Then we have

t20 < t30 . Analogously, we have t30 < t40 , . . ., tm−10 < tm0 . Therefore, by
∂dm

∂tm
= (tm − tm−1)bm1 +(tm −1)bm2 , we have tm0 −1 < 0. So we have 1 ≤ t10 <

t20 < t30 < . . . < tm0 < 1. This is a contradiction. �

Let ti0 be a root of ∂di

∂ti
= 0, where i = 1, 2, . . ., m. We apply Lemmas 4, 5

and 6 and obtain

Theorem 4. e0 and em+1 are on different grid plane iff 0 < t10 < t20 < . . . <
tm0 < 1.

3 An Example

We provide one example to show that there is a simple cube-curve such that
none of the vertices of its 3D MLP is a grid vertex. See Table 1, which lists the
coordinates of the critical edges e0, e1, . . . , e19 of g. Let v(t0), v(t1), . . . , v(t19) be

The Class of Simple Cube-Curves 191

Table 1. Coordinates of endpoints of critical edges in Figure 5

Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 -1 4 7 -1 4 8
e1 1 4 7 1 5 7
e2 2 4 5 2 5 5
e3 4 5 4 4 5 5
e4 4 7 4 5 7 4
e5 5 7 2 5 8 2
e6 7 7 2 7 8 2
e7 7 8 4 8 8 4
e8 8 10 4 8 10 5
e9 10 10 4 10 10 5
e10 10 8 5 11 8 5
e11 11 7 7 11 8 7
e12 12 7 7 12 7 8
e13 12 5 7 12 5 8
e14 10 4 8 10 5 8
e15 9 4 10 10 4 10
e16 9 0 10 10 0 10
e17 9 0 8 10 0 8
e18 9 1 7 9 1 8
e19 -1 2 7 -1 2 8

Fig. 5. A simple cube-curve such that none of the vertices of its 3D MLP is a grid
vertex

192 F. Li and R. Klette

the vertex of the MLP of g such that v(ti) is on ei and ti is in [0, 1], where i
= 0, 1, 2, . . . , 19. By Appendix we can see that there is not any end angle in
g. In fact, there are 6 middle angles: ∠(e2, e3, e4)), ∠(e3, e4, e5)), ∠(e6, e7, e8)),
∠(e9, e10, e11)), ∠(e10, e11, e12)), and ∠(e13, e14, e15)). By Theorem 3, we have
t3, t4, t7, t10, t11 and t14 are in (0, 1). By Figure 5 we can see that e1 ‖ e2 and
e0 and e3 are on different grid planes. By Theorem 4, we have t1 and t2 are
in (0, 1).

Analogously, we have t5 and t6 are in (0, 1); t8 and t9 are in (0, 1); t12 and
t13 are in (0, 1); t15, t16 and t17 are in (0, 1); and t18, t19 and t0 are in (0, 1).
Therefore, each ti is in (0, 1), where i = 0, 1, . . . , 19. So g is a simple cube-curve
such that none of the vertices of its 3D MLP is a grid vertex.

4 Conclusions

We have constructed a non-trivial simple cube-curve such that none of the ver-
tices of its 3D MLP is a grid vertex. Indeed, by Theorems 2 and 4, and Lemmas 5
and 6, we can come to the conclusion that given a simple first class cube-curve
g, none of the vertices of its 3D MLP is a grid point iff g has not any end angle
and for every set of maximal parallel edges of g, its two adjacent critical edges
are not on the same grid plane.

It follows that the (provable correct) MLP algorithm proposed in [6] cannot
be applied to this curve, because it requires at least one end angle for decom-
posing the curve into arcs. Of course, the rubber-band algorithm is applicable,
and will produce a result (i.e., a polygonal curve). However, in this case we are
still unable to show whether this result is the MLP of the given cube-curve or
not.

Acknowledgements. The reviewers’ comments have been very helpful for re-
vising an earlier version of this paper.

Appendix: List of ∂di

∂ti
(i = 0, 1, . . ., 19)

We compute ∂di

∂ti
(i = 0, 1, . . ., 19) for g as shown in Figure 5.

dt0 =
t0√

t0
2 + t1

2 + 4
+

t0 − t19√
(t0 − t19)2 + 4

(1)

dt1 =
t1√

t0
2 + t1

2 + 4
+

t1 − t2√
(t1 − t2)2 + 5

(2)

dt2 =
t2 − t1√

(t2 − t1)2 + 5
+

t2 − 1√
(t2 − 1)2 + (t3 − 1)2 + 4

(3)

dt3 =
t3 − 1√

(t2 − 1)2 + (t3 − 1)2 + 4
+

t3√
t3

2 + t4
2 + 4

(4)

dt4 =
t4√

t3
2 + t4

2 + 4
+

t4 − 1√
(t4 − 1)2 + t5

2 + 4
(5)

The Class of Simple Cube-Curves 193

dt5 =
t5√

(t4 − 1)2 + t5
2 + 4

+
t5 − t6√

(t5 − t6)2 + 4
(6)

dt6 =
t6 − t5√

(t6 − t5)2 + 4
+

t6 − 1√
(t6 − 1)2 + t7

2 + 4
(7)

dt7 =
t7√

(t6 − 1)2 + t7
2 + 4

+
t7 − 1√

(t7 − 1)2 + t8
2 + 4

(8)

dt8 =
t8√

(t7 − 1)2 + t8
2 + 4

+
t8 − t9√

(t8 − t9)2 + 4
(9)

dt9 =
t9 − t8√

(t9 − t8)2 + 4
+

t9 − 1√
(t9 − 1)2 + t10

2 + 4
(10)

dt10 =
t10√

(t9 − 1)2 + t10
2 + 4

+
t10 − 1√

(t10 − 1)2 + (t11 − 1)2 + 4
(11)

dt11 =
t11 − 1√

(t11 − 1)2 + (t10 − 1)2 + 4
+

t11√
t11

2 + t12
2 + 1

(12)

dt12 =
t12√

t11
2 + t12

2 + 1
+

t12 − t13√
(t12 − t13)2 + 4

(13)

dt13 =
t13 − t12√

(t13 − t12)2 + 4
+

t13 − 1√
(t13 − 1)2 + (t14 − 1)2 + 4

(14)

dt14 =
t14 − 1√

(t13 − 1)2 + (t14 − 1)2 + 4
+

t14√
t14

2 + (t15 − 1)2 + 4
(15)

dt15 =
t15 − 1√

t14
2 + (t15 − 1)2 + 4

+
t15 − t16√

(t15 − t16)2 + 16
(16)

dt16 =
t16 − t15√

(t16 − t15)2 + 16
+

t16 − t17√
(t16 − t17)2 + 4

(17)

dt17 =
t17 − t16√

(t17 − t16)2 + 4
+

t17√
t17

2 + (t18 − 1)2 + 1
(18)

dt18 =
t18 − 1√

t17
2 + (t18 − 1)2 + 1

+
t18 − t19√

(t18 − t19)2 + 101
(19)

dt19 =
t19 − t18√

(t19 − t18)2 + 101
+

t19 − t0√
(t19 − t0)2 + 4

(20)

194 F. Li and R. Klette

References

1. T. Bülow and R. Klette. Digital curves in 3D space and a linear-time length esti-
mation algorithm. IEEE Trans. Pattern Analysis Machine Intelligence, 24:962–970,
2002.

2. R. Klette and A. Rosenfeld. Digital Geometry: Geometric Methods for Digital Pic-
ture Analysis. Morgan Kaufmann, San Francisco, 2004., 2004.

3. F. Sloboda, B. Zaťko, and R. Klette. On the topology of grid continua. SPIE Vision
Geometry VII, 3454:52–63, 1998.

4. F. Sloboda, B. Zaťko, and J. Stoer. On approximation of planar one-dimensional
grid continua. In R. Klette, A. Rosenfeld, and F. Sloboda, editors, Advances in
Digital and Computational Geometry, pages 113–160. Springer, Singapore, 1998.

5. A. Jonas and N. Kiryati. Length estimation in 3-D using cube quantization, J.
Math. Imaging and Vision, 8: 215–238, 1998.

6. F. Li and R. Klette. Minimum-length polygon of a simple cube-curve in 3D space.
In Proceedings IWCIA2004, LNCS3322 (to appear).

7. J. Canny and J.H. Reif. New lower bound techniques for robot motion planning
problems. Proc. IEEE Conf. Foundations Computer Science, pages 49–60, 1987.

8. J. Choi, J. Sellen, and C.-K. Yap. Approximate Euclidean shortest path in 3-space.
Proc. ACM Conf. Computational Geometry, ACM Press, pages 41–48, 1994.

Computation of Homology Groups and
Generators

Samuel Peltier1, Sylvie Alayrangues2, Laurent Fuchs1,
and Jacques-Olivier Lachaud2

1 SIC (FRE 2731 CNRS), Université de Poitiers,
Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France

{peltier, fuchs}@sic.univ-poitiers.fr
2 LaBRI, Université Bordeaux 1,

351 cours de la Libération, 33405 Talence Cedex, France
{alayrang, lachaud}@labri.fr

Abstract. Topological invariants are extremely useful in many applica-
tions related to digital imaging and geometric modelling, and homology
is a classical one. We present an algorithm that computes the whole ho-
mology of an object of arbitrary dimension: Betti numbers, torsion coef-
ficients and generators. Results on classical shapes in algebraic topology
are presented and discussed.

1 Introduction

In digital image analysis, shape invariants are useful for classification, indexa-
tion, or, more recently, shape description [ACZ04]. They can be used in object
simplification and object thinning. In solid modeling, shape invariants ensure
the consistency of constructive operations. Computing topological invariants of
objects has thus a significant impact in these domains. The fundamental group is
an invariant that carries most of the topological information about an object. It
has been studied by many authors [Kon89, Box99, Mal01, ADFQ03] in the image
analysis field. But the comparison of such groups is highly related to undecidable
problems [Mal01]. Many authors have proposed algorithms to compute the Euler
characteristic (some of them summarized in [KR89]), but it is a simpler and less
expressive topological invariant. Other approaches compute the Betti numbers
[DE95] of embedded objects.

We focus here on homology groups, which are known to be computable in
finite dimensions, and which have a good topological characterization power
at least in low dimensions. We not only compute these groups but also their
generators, to delineate the topological holes on the shapes. For instance, the
generators of the homology group of dimension 1 are connectivity lines of the
shape: cutting along such lines does not divide the shape into two parts. The
contributions of this work are: (i) we report recent works in computational group
theory and bring these results to the imagery community, (ii) we combine these
works to classical results in homology theory to compute the homology groups

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 195–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

196 S. Peltier et al.

(Betti numbers and torsion) and their generators, (iii) we effectively implement
these algorithms with numerous optimizations.

In the first part of the paper we recall classical definitions in homology theory.
We choose here simplicial homology since it is widely used in geometric modeling
and is straightforwardly applicable to digital objects. We then present related
works. After that, we present our approach for computing homology groups:
Smith Normal Form (SNF) of the boundary homomorphisms, modified SNF to
compute generators, integer computations performed with a modulo. Lastly, we
show some experiments and list some perspectives to this work.

2 Simplicial Homology

Semi- implicial et. Shapes are classically modeled with a cellular subdivi-
sion. Several combinatorial structures may represent such a subdivision. We
choose here semi-simplicial sets, which can represent indifferently manifold or
non-manifold objects. This structure is a subclass of simplicial sets, a structure
studied in algebraic topology [May67, Cur71].

Definition 1. [May67] A semi-simplicial set S = (K, (dq
i)) is a graded family

of sets K = (Kq)q∈N together with maps dq
i : Kq → Kq−1 for i = 0, . . . , q, which

satisfy the following identity: ∀σ ∈ Kq, dq−1
j (dq

i (σ)) = dq−1
i−1 (dq

j(σ)) if j < i.

The elements of Kq are called q−simplices. The dq
i are called boundary oper-

ators (the subscripts q will generally be dropped later for clarity). Simplices are
glued together consistently with these operators (see Fig 1a-b for two examples).

Semi-simplicial sets are clearly adapted to the constructive operations of
solid modeling [LL95]. They are also well suited to digital imagery [DG03]. To
determine a semi-simplicial set that represents a given digital object, the first

d0

d0

d0

d0

d0

d0d0

d0

d0
d1

d1

d1

d1

d1

d1

d1

d1d1

d2

d2

(a)

d0

d0

d0

d0

d0d1

d1

d1

d1d1

d2

(b)

S1

S2

S3

A1

A2A3

A4

F1

(c)

Fig. 1. On (a) and (b), examples of semi-simplicial sets. On (c), positive orientation of
the simplices of (b)

Ss

Computation of Homology Groups and Generators 197

step is to construct a simplicial analog. One method is proposed in [GDR03] (see
Section 3). The second step is to number the vertices of the simplicial analog;
the boundary maps follow directly [LE93].

We can now introduce homology groups in an intuitive way. All objects are
assumed to be finite. Note that the homology theory is applicable on most com-
binatorial structures.

Chain, Boundary Homomorphism, Chain Complex. In a first step, we
define group structures on semi-simplicial sets. A p-chain in Kp is a linear com-
bination of p-simplices with integer coefficients. More formally, any p−chain
is written uniquely as a finite sum

∑np

i=1 α
p
i σ

p
i , where np is the cardinal of

Kp = {σp
1 , · · · , σp

np
}, and for all i, αp

i is an integer. The addition over p-chains is
defined simply by adding coefficients simplex by simplex. The resulting groups
are denoted by Cp. For all p, Kp forms a basis for Cp (see [Mun84] p.28).

A p-chain is a purely formal construction. The coefficients αi have generally
not a geometric interpretation, except for the coefficients 1 and −1. In this case 1·
σ means that we consider the simplex σ with its orientation and −1·σ means that
we consider the simplex σ with its opposite orientation. This is consistent with
the fact that simplices can be equipped with two orientations, one considered
positive and the other negative. Fig. 1(c) displays the positive orientations of
the simplices of Fig. 1(b). A formal definition of simplex orientation is available
in classical algebraic topology books [Mun84, Hat02].

In a second step, we relate chain groups of successive dimension with homo-
morphisms called boundary operators.

Definition 2. For all p > 0, the boundary of a p-simplex σp, denoted by ∂p(σp),
is the (p − 1)-chain

∑p
i=0(−1)idi(σ). 0-simplices have an empty boundary. The

boundary is extended as an homomorphism from Cp to Cp−1, meaning for any
p-chain c =

∑np

i=1 α
p
i σ

p
i , its boundary ∂p(c) is equal to

∑np

i=1 α
p
i ∂p(σ

p
i).

Usually, when no confusion may arise, we simply write ∂(c) for the boundary
of a p-chain c. For example, on Fig. 1c, we have ∂(F) = A1 − A2 + A3 and we
can verify that ∂(∂(F)) = ∂(A1 − A2 + A3) = 0.

We have just constructed a sequence of chain groups Cp together with ho-

momorphisms ∂p, Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0. One can check that

∂p−1(∂p(c)) = 0 for all p-chains c. This sequence is called a free chain complex.

Cycle, Boundary, Hole. The homology groups of a combinatorial object are
derived from specific subgroups of the chains of a free chain complex.

The p-chains whose boundary is empty are called p-cycles. For example, on
Fig. 1c, the 1-chains A1 −A2 +A3 and A1 +A4 are 1-cycles. The set of p-cycles
is a subgroup of Cp, denoted by Zp.

Some p-chains are the boundary of a (p + 1)-chain. They are called p-
boundaries. For example, on Fig. 1c, the 1-chain A1 − A2 + A3 is the boundary
of the 2-chain F . The set of p-boundaries form a subgroup of Cp, denoted by
Bp. Since ∀c ∈ Cp, ∂p−1(∂p(c)) = 0, we have Bp ⊂ Zp ⊂ Cp.

198 S. Peltier et al.

A p-dimensional hole is a p-cycle which is not a p-boundary. For example, on
Fig. 1c, the 1-cycle z1 = A1 + A4 is not a boundary. We define an equivalence
relation in the group of p-cycles as follows: two p-cycles s and t are in the same
equivalence class iff there exist a chain c with s = t+ ∂p+1c. They are then said
to be homologous. In particular, when s = ∂p+1c then s is homologous to 0.
The set of cycles is then partitioned by the homology relation, according to the
hole they surround. Two cycles in the same equivalence class surround the same
hole. The set of p-boundaries is the 0-equivalence class. For example, the cycle
z2 = A2 − A3 + A4 is in the z1 equivalence class because z1 = z2 + ∂2(F).

Homology Groups, Weak Boundary. In any dimension p, the homology
group Hp is defined as the group of the equivalent classes for the homology
relation. It is exactly the quotient group of the p-cycles by the p-boundaries,
Hp = Zp/Bp. Homology groups are known to be topological invariants, meaning
homeomorphic shapes have isomorphic homology groups.

For all p, there exists a finite number of elements of Hp from which we can
deduce all Hp elements, thus Hp is called finitely generated. So, the group Hp

verifies the fundamental theorem of finitely generated abelian groups [Mun84],
and Hp is isomorphic to a direct sum:

Z ⊕ · · · ⊕ Z︸ ︷︷ ︸
βp

⊕Z/tp1Z ⊕ · · · ⊕ Z/tpnZ.

We denote by βp the number of apparitions of Z in this direct sum: it is the
number of elements of Hp with infinite order and is called the p-th Betti number.
The numbers tp1, . . . , t

p
n are called the torsion coefficients of Hp. To each group Z

of Hp is associated a set of p-dimensional homologous cycles: they surround the
same p-dimensional topological hole and are not the boundary of any p+1-chain.
It is the same for each group Z/tpi Z: the associated homologous cycles are not
the boundary of any p + 1-chain. However, when taken tpi times, they become
the boundary of some p+1-chain. An example is the 1-cycle A2 on Fig. 2, which
becomes a boundary only when taken two times: 2A2 = ∂(F1 + F2).

S

d0

d0

d0

d0

d0

d1

d1

d1

d1

d1

d2

d2

F1

F2

A1

A2

A3

(a) (b)

Fig. 2. Klein bottle. (a) Semi-simplicial and (b) geometric representation

Computation of Homology Groups and Generators 199

3 Related Works

Kaczynski et al. [KMS98] proposed to compute a chain complex homology with
a sequence of reductions. The idea is to derive a new object with less cells while
preserving homology at each step of the transformation. To reduce the number
of cells, one chooses two cells a and b, such that ∂b = λa+ r and λ is invertible.
These cells are then suppressed and the boundary homomorphism is updated. To
ensure invertible coefficients, Kaczynski et al. choose them in a field. In this case,
it can be verified that the reduction algorithm stops on a smallest chain complex
with same homology where each cell is a cycle representing the homology class.

González-Dı́az and Real [GDR03] recently proposed an algorithm to com-
pute cohomology information on digital objects that are subsets of the 3D body-
centered cubic grid. They first construct a simplicial complex with identical
topology. After that the cohomology is obtained by the construction of a chain
contraction in two passes: (i) a thinning that reduces the size of the data by
simplicial collapses, (ii) an incremental algebraic thinning that progressively ex-
tracts the equivalence classes of the cohomology groups. A further computation
provides the cohomology ring of the digital object, which appears to carry com-
plementary topological information. All coefficients are in Z/2Z (also a field).

The preceding approaches are interesting when dealing with embedded ob-
jects in 2D or 3D. Homology over a field is then enough to characterize shapes,
since objects have no torsion. On the contrary, we choose a more generic ap-
proach, valid for arbitrary dimension and shapes. In the following section, we
address the problem of computing the whole homology over the coefficient do-
main Z (a ring, not a field).

4 Computation of Homology Groups and Generators

In this section, we show how to compute the homology groups Hp from the
boundary homomorphisms. First, the Betti number and torsion coefficients are
deduced from the classical Smith Normal Form (SNF) of ∂p and ∂p+1. Then,
we briefly explain why their SNF must be slightly modified to compute a set of
generators of Hp. We finally discuss about implementation problems linked to
that class of methods. We thus propose a new algorithm which benefits from im-
provements proposed by Dumas et al. [DSV01] and computes the Betti numbers,
the torsion coefficients and a set of ”moduli generators”.

4.1 Homology Groups via Smith Normal Form

Information on homology groups may be deduced from matrix representations
of boundary homomorphisms. A natural basis of the group of p-chains of a chain
complex is the one made of all its p-simplices, i.e. Kp. In the following, the matrix
Ep+1, called p-th incidence matrix, represents the homomorphism ∂p+1 relatively
to the canonical bases Kp (rows) and Kp+1 (columns). Each column in Ep+1 is
the boundary of one p + 1-simplex, decomposed on the base of p-simplices.

200 S. Peltier et al.

There exists bases in which any homomorphism has a very specific matrix
form, the so-called Smith Normal Form (SNF). It is a matrix full of 0′s except
for an upper left square submatrix which is diagonal with increasing coefficients:
diag(λ1, . . . , λl) such that each λi is greater than 1 and divides each λj for
j > i. The (λi) are called invariant factors of the homomorphism. Let Dp+1 be
the SNF of ∂p+1 with associated bases (ep+1

k) and (fp
k):

Dp+1 =

ep+1
1 · · · ep+1

γp
ep+1

γp+1 · · · ep+1
np+1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λp
1 0

. . .
0 λp

γp

0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

fp
1

...
fp

γp

fp
γp+1

...
fp

np

With these notations, it may be proved that:

1. (ep+1
γp+1, · · · , ep+1

np+1
) is a basis of Zp+1,

2. (λp
1f

p
1 , . . . , λ

p
γp
fp

γp
) is a basis of Bp,

3. (fp
1 , . . . , f

p
γp

) is a basis of a group Wp, known as the group of weak boundaries
(Wp = {cp ∈ Cp/∃λ ∈ Z∗, λcp ∈ Bp}).

Moreover, the group Hp is isomorphic to the direct sum Zp/Wp ⊕ Wp/Bp

where Zp/Wp is a free group and Wp/Bp is a torsion group. The torsion coeffi-
cients of Hp are exactly the invariant factors of ∂p+1 strictly greater than 1 (given
by Dp+1). Furthermore, the Betti number of Hp is equal to rank(Zp)−rank(Wp).
They are read respectively on Dp and Dp+1 with rank(Zp) = np − γp−1 and
rank(Wp) = γp.

However all the generators of the homology groups cannot be deduced from
the bases of the SNF. More precisely, we cannot determine the set of cycles
which are not weak boundaries. To do it effectively, two successive boundary
homomorphisms ∂p−1 and ∂p must respectively share the same upper and lower
bases (i.e. (fp

1 , · · · , fp
np

) = (ep
1, · · · , ep

np
)). This is obviously not the case since

Dp−1Dp �= 0 (recall that ∂p−1∂p = 0 in a free chain complex).

4.2 Generators with Modified SNF

Cairn [Cai61] proved that it is possible to simultaneously choose bases for each
group of p-chains such that the matrix Np representing each boundary operator
relatively to these bases is in a normal form quite similar to SNF. Moreover he
explains how to deduce a set of generators of the homology group Hp directly
from the matrix Np+1. Np+1 is shown on Tab. 1. The number of invariant factors
of ∂p+1 is γp and ρp of them are strictly greater than 1.

The set {bp
1, · · · , b

p
βp

} generates the free part of Hp: they are p-cycles when
read as a column in Np and they have no boundary antecedent when read as a

Computation of Homology Groups and Generators 201

Table 1. Modified SNF of boundary homomorphism ∂p+1

(p + 1) − Cycles Weak Boundaries Antecedents

ap+1
1 · · · ap+1

γp+1 bp+1
1 · · · bp+1

βp+1
cp+1
1 · · · cp+1

ρp
cp+1

ρp+1 · · · cp+1
γp

ap
1 λp

γp
0

Weak Boundaries

... 0 0 . . . 0
ap

ρp
0 λp

γp−ρp+1

ap
ρp+1 1 0
... 0 0 0 . . .

ap
γp

0 1
bp
1 Cycles but not

Weak Boundaries
... 0 0 0 0

bp
βp

cp
1
... 0 0 0 0

cp
γp−1

row in Np+1. The set {ap
1, · · · , ap

γp
} generates the torsion part of Hp: they are

p-cycles when read as a column in Np and they must be multiplied by the λp
i to

have a boundary antecedent when read as a row in Np+1.
Agoston [Ago76] proposed an algorithm to compute all matrices Np and keep

tracks of changes of bases. The idea is to compute successively all matrices Np

from 0 to the maximal index of the desired homology groups. Each homomor-
phism is successively expressed in four pairs of bases as in Tab. 2.

Table 2. Expression of the homomorphisms

Step Bases []\[] and Matrix of ∂p Bases []\[] and Matrix of ∂p+1

0. input from iteration p [(Vp−1U
−1
p−1)

−1Kp−1]\[UpKp]
(mSNF) Np = Vp−1U

−1
p−1EpUp

1. Incidence matrix [Kp]\[Kp+1]
of ∂p+1 (incidence) Ep+1

2. Left-multiply Ep+1 [(U−1
p)−1Kp]\[Kp+1]

by U−1
p E′

p+1 = U−1
p Ep+1

3. Compute the mSNF [(VpU−1
p)−1Kp]\[Up+1K

p+1]
Np+1 of ∂p+1 from E′

p+1 (mSNF) Np+1 = VpU−1
p Ep+1Up+1

4. Right-multiply Np [(Vp−1U
−1
p−1)

−1Kp−1]\[UpV −1
p Kp]

by V −1
p NpV −1

p (same as Np)

At the end of the whole computation, all the matrices Np represent the ho-
momorphisms ∂p relatively to bases Γ p such that Γ 0 = V −1

0 K0, Γ 1 = U1V
−1
1 K1,

. . . , Γn−1 = Un−1V
−1
n−1K

n−1, Γn = UnK
n.

202 S. Peltier et al.

4.3 Optimizations for Effective Computation

Algorithms for computing the SNF or the presented modified version are well
known (e.g. see [Ago76, Mun84]). But major difficulties arise when trying to
program them effectively. These problems are mainly linked to the high compu-
tational cost of the algorithms and to the appearance of very big integers during
the process. The algorithm is namely valid as long as integer computations have
an arbitrary precision. With standard 32 or 64 bits integers, the algorithm is no
more accurate. This problem arises even in small chain complexes. Hafner et al.
have exhibited a 10 × 10 incidence matrix, with no value greater than 10, that
induces huge intermediate integer numbers in SNF computation.

Deterministic and stochastic algorithms have been proposed to tackle these
difficulties. The best known deterministic algorithm has been proposed by Stor-
johann [Sto96]. Stochastic algorithms have for example been proposed by Gies-
brecht et al. [Gie95]. They are generally more efficient than deterministic ones on
sparse matrices, but are quite equivalent on dense matrices. They are however
restricted to the SNF computation and do not extract generators.

As far as we know, only Agoston [Ago76] proposed an algorithm to compute
all homology information (including generators), but its implementation does
not address the difficulties mentioned above. We propose here an adaptation of
a Gaussian elimination algorithm developed by Dumas et al. [DSV01], which was
originally only dedicated to the computation of the SNF of unrestricted simplicial
complex. We combine this work to the work of Agoston to compute all homology
information of semi-simplicial sets: Betti number and torsion coefficients of all
homology groups, sets of “moduli generators”. The main steps of the algorithm
are described below. All operations made on the incidence matrix implies changes
of bases that are stored in suitable matrices.

1. (Prepare matrix for Dumas’s algorithm.) The rows of the incidence matrix
are ordered by increasing pivot,

2. (Same as Dumas.) The matrix is put in echelon form with as many pivots
at 1 as possible by
– first pass: only elementary row operations are applied,
– second pass: all rows are reduced according to their gcd.
– the matrix is now in triangular form: deduce submatrix determinant

(which is also the product of the invariant factors).
– All further integer operations are made modulo twice this determinant. It

has indeed been proved (for example by Storjohann) that such a compu-
tation using an appropriate modulo preserves the homology information.

3. (Different from Dumas.) Elementary rows and columns operations are per-
formed to compute the modified SNF on the submatrix with non-zero rows.
Changes of bases are traced. Agoston’s algorithm is used to compute the gen-
erators, which are “moduli generators” in the sense they have been partly
computed with a modulo.

Computation of Homology Groups and Generators 203

5 Experimentations

We validate our approach on shapes classically encountered when testing topo-
logical invariants. For each shape, Betti numbers and torsion coefficients are
extracted from the modified SNF. The generators are read in the matrices Γ i.
With this information, we are able to delineate each hole of the complex. It
should be noted that we only present the generators for surfaces because the
nature of 2-cycles on volumes is not well captured by 2D pictures.

Fig. 3 and Fig. 4 shows the shapes and the corresponding generators. Only the
generators of the homology group H1 are displayed since the others are trivial.
For the torus, we have two cycles, one for each 1-dimensional hole (H1(K) ∼=
Z ⊕ Z). According to the topological nature of the Moebius strip (homotopic
to a circle), we found only one cycle (H1(K) ∼= Z). For the Klein bottle, two
cycles are found, one for the free part of the homology and one for the torsion
part (H1(K) ∼= Z ⊕ Z/2Z).

Torus Moebius band Klein bottle

Fig. 3. Examples of homology generators on some classical surfaces

We have computed these generators using the previously described method
with moduli. We observe that the “moduli” generators are homologous to those
that would have been computed with arbitrary precision integer. On Fig. 3 each
objects has approximately 2000 triangles.

We guess that this property can be justified in a strict mathematical way
but as far we know there is no indication to invalid or to confirm this property.
Usual mathematical approaches are not really interested by the effective rep-

204 S. Peltier et al.

Fig. 4. Example of homology generators on a non-manifold complex

resentation of the generators, which explains the lack of theoretical results on
“moduli” generators.

To conclude, we have presented and implemented a technique to compute the
whole homology of arbitrary finite shapes. We have addressed the problem of
extracting generators of the homology groups with a modulo. For future works,
we would like to exhibit the theoretical link between generator modulo and Z-
generators. We want also to study the simploidal homology for discrete objects.
Cubes are indeed simploids and simploidal representations of discrete objects
are thus more compact than simplicial ones.

References

[ACZ04] M. Allili, D. Corriveau, and D. Ziou. Morse homology desriptor for shape
characterization. In Proc. ICPR 2004, 2004.

[ADFQ03] R. Ayala, E. Dominguez, A.R. Francès, and A. Quintero. Homotopy in dig-
ital spaces. DAMATH: Discrete Appl. Math. and Combin. Oper. Research
and Comput. Science, 125, 2003.

[Ago76] M. K. Agoston. Algebraic Topology, a first course. Marcel Dekker Ed.,
1976.

[Box99] L. Boxer. A classical construction for the digital fundamental group. J.
Math. Imaging Vision, 10:51–62, 1999.

[Cai61] S. S. Cairns. Introductory Topology. Ronald Press Company, 1961.
[Cur71] E. Curtis. Simplicial homotopy theory. Adv. Math., 6:107–209, 1971.
[DE95] C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for betti

numbers of simplicial complexes on the 3-sphere. Comput. Aided Geom.
Design, 12(7):771–784, 1995.

[DG03] P. Desbarats and S. Gueorguieva. Topological mainframe for numerical
representations of objects. In Proc. Int. Conf. Comput. Science and its
Appl., volume 2668 of LNCS, pages 498–507. Springer, 2003.

Computation of Homology Groups and Generators 205

[DSV01] J. G. Dumas, B.D. Saunders, and G. Villard. On efficient sparse integer
matrix smith normal form computations. Journal of Symbolic Computation,
2001.

[GDR03] R. González-Dı́az and P. Real. Toward digital cohomology. In G. Sanniti di
Baja, S. Svensson, and I. Nyström, editors, Proc. DGCI’2003, volume 2886
of LNCS, pages 92–101. Springer, 2003.

[Gie95] M. Giesbrecht. Nearly optimal-algorithms for canonical matrix-forms.
SIAM J. COMPUT., 24(5):948–969, OCT 1995.

[Hat02] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
disponible sur http://www.math.cornell.edu/∼hatcher/AT/ATpage.html.

[KMS98] T. Kaczynski, M. Mrozek, and M. Slusarek. Homology computation by
reduction of chain complexes. Computers & Math. Appl., 34(4):59–70, 1998.

[Kon89] T. Y. Kong. A digital fundamental group. Computers and Graphics,
13(2):159–166, 1989.

[KR89] T. Y. Kong and A. Rosenfeld. Digital Topology: Introduction and Survey.
Comput. Vision, Graphics, and Image Processing, 48(3):357–393, 1989.

[LE93] P. Lienhardt and H. Elter. Different combinatorial models based on the
map concept for the representation of different types of cellular complexes.
In Proceedings of IFIP TC 5/WG II Work. Conf. on Geom. Modeling in
Comp.Graphics. Springer, 1993.

[LL95] V. Lang and P. Lienhardt. Geometric modeling with simplicial sets. In
Proc. of Pacific Graphics’95, Seoul, Korea, 1995.

[Mal01] R. Malgouyres. Computing the fundamental group in digital spaces.
IJPRAI, 15(7):1075–1088, 2001.

[May67] J. P. May. Simplicial Objects in Algebraic Topology. Van Nostrand, 1967.
[Mun84] J. R. Munkres. Elements of algebraic topology. Perseus Books, 1984.
[Sto96] A. Storjohann. Near optimal algorithms for computing Smith normal forms

of integer matrices. In Y. N. Lakshman, editor, Proceedings of the 1996
International Symposium on Symbolic and Algebraic Computation, pages
267–274. ACM, 1996.

Inclusion Relationships and Homotopy Issues
in Shape Interpolation for Binary Images

Javier Vidal1,2, Jose Crespo1, and Victor Maojo1

1 Artificial Intelligence Laboratory, Facultad de Informática,
Universidad Politécnica de Madrid,

28660 Boadilla del Monte (Madrid), Spain
jvidal@infomed.dia.fi.upm.es
{jcrespo, vmaojo}@fi.upm.es

2 Computer Science Department, Universidad de Concepción, Chile
jvidal@udec.cl

http://www.udec.cl/~ jvidal

Abstract. Some image processing and analysis applications require
performing image interpolation. This paper focuses on interpolation
techniques that treat the shapes and the structures of binary images. A
summary of some interpolation methods is presented, and their behavior
concerning inclusion relationships and homotopy issues is studied. Then,
this work discusses an inclusion relationship property that is used in a
technique of ours based on median sets that has been recently proposed.
The paper shows that such a property can improve shape interpolation
results in a relatively easy manner. Several experimental results are
provided.

Keywords: image processing, interpolation, shape interpolation, math-
ematical morphology, median set.

1 Introduction

Image processing applications normally deal with discrete data organized in
slices. In some situations, it is useful, or even required, to perform some type
of image interpolation [1]. The objective of image interpolation methods is gen-
erally to compute new interpolated slices between those originating from the
original data.

Until recently, almost all image interpolation methods have used traditional
numerical analysis techniques and linear signal processing approaches. In the
last decade, several methods that deal directly with image shapes have been
proposed [2, 3, 4, 5, 6, 7, 8, 9], in particular mathematical morphology [10, 11, 12,
13] related approaches.

This paper focuses on the behavior of image interpolation methods concerning
inclusion relationships and homotopy issues in binary images. First, we study the
behavior of some methods in several situations. We will be concerned, especially,
in what happens when nested grains and pores are present in an image.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 206–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inclusion Relationships and Homotopy Issues in Shape Interpolation 207

Then, we discuss a simple inclusion property satisfied by a technique of ours
that has been recently proposed [14]. We will see that this property can improve
the experimental results obtained in situations where there exists an inclusion
of structures or shapes. There are several aspects in this technique of relative
complexity (such as, for example, how connected components are matched), but
we will focus in how the application of the inclusion property can be beneficial
in these situations.

This paper is organized as follows. Section 2 provides a summary of some
interpolation methods. In Section 3, we study the behavior of the methods pre-
sented in Section 2 in some experimental situation; afterwards, we discuss the
inclusion property of our technique and its application to several experimental
cases. Conclusions are commented in Section 4.

2 A Summary of Some Shape Interpolation Methods

This section presents a summary of the interpolation methods focusing mainly
on morphological ones, which adequately consider images shapes.

1. The methods based on the Hausdorff distance. The usage of Hausdorff dis-
tance for image interpolation was introduced in [9, 15]. A general definition
of the Hausdorff distance between two binary sets X and Y is:

ρ(X,Y) = inf{λ : X ⊆ δλ(Y); Y ⊆ δλ(X)} (1)

where δλ denotes the dilation by a compact disk of radius λ centered at the
origin.
The most basic Hausdorff geodesic between X and Y is obtained by:

Zα(X,Y) = δαρ(X) ∩ δ(1−α)ρ(Y), α ∈ [0, 1] (2)

where the coefficient α is incremented from 0 to 1 in order to generate the
different sets Z.
A possible problem of (2) is that the interpolated set Zα depends on the
distance between the input sets and, in general, its size is bigger than X
and Y . Other related methods based on Hausdorff distance intend to correct
this issue. For example, an additional Hausdorff geodesic corresponding to
the cross-dilation Z ′

α = δαY ((1−α)X) can be used to intersect (2). Another
variant, the reduced Hausdorff distance method, defines Xa and Yb as the
translated initial sets X and Y using vectors a and b, respectively. This way,
the initial sets are “aligned” before applying (2). Finally, the incorporation
of a mask G (to be intersected with (2)) was proposed in [6, 16]. The mask
G is obtained as G = ελ(CH(δλ(X ∪ Y))), where CH computes the convex
hull of a set [12].

2. Median set-based interpolation. The median set [2, 4] is related to the mor-
phological notion of skeleton by influence zone (SKIZ).

208 J. Vidal, J. Crespo, and V. Maojo

Let us consider two sets X and Y , such that X ∩ Y �= φ. The median set
can be defined as:

M(X,Y) =
⋃
λ≥0

{δλ(X ∩ Y) ∩ ελ(X ∪ Y)} (3)

where δλ and ελ represents the dilation and erosion with a disk of radius λ.
Initially this method was restricted to intersected sets. Subsequently, the
notion of median set to non-intersected sets using affine transformations
(translation, rotation and scaling) is described in [6, 17]. The interpolation
sequence is obtained computing iteratively (3).

3. Interpolation function. The method above can also be implemented using
two relative distances to generate the interpolated set [8]. This technique is
also applied to intersected sets.
Let X and Y be the input sets, such that X ∩ Y �= φ. The interpolation
functions corresponds to the distance from X ∩ Y in X (intX

X∩Y) and to the
distance from X ∩ Y in Y (intY

X∩Y):

intX
X∩Y (x) =

⎧⎨⎩
0; x ∈ XC

d(x); x ∈ X
(X∩Y)

1; x ∈ (X ∩ Y)
intY

X∩Y (x) =

⎧⎨⎩
0; x ∈ Y C

d(x); x ∈ Y
(X∩Y)

1; x ∈ (X ∩ Y)
(4)

where d is the relative distance from x to X ∩ Y and from x to Xc (in the
left case) or to Y c (in the right case). The value of d is between 0 and 1.
The interpolated set Z at distance α from X and (1−α) from Y is the union
of two sets:

Zα = {x : intX
X∩Y (x) ≤ α} ∪ {y : intY

X∩Y (y) ≤ (1 − α)}; α ∈ [0, 1] (5)

The interpolation function can be applied to non-intersected sets using affine
transformations [6].

This summary is not exhaustive, and other methods were also studied during
the early stages of our work. For example we can mention the methods described
in [5, 18, 19, 20, 7].

3 Inclusion Relationships and Homotopy Issues

We think that the consideration of inclusion relationships and homotopy aspects
is important to adequately interpolate image shapes.

In this section, we will first study the behavior of the methods presented
in Section 2 concerning homotopy issues with binary images. Then, we will see
that many of these situations can be better treated with a technique of ours that
implements a simple inclusion property.

Inclusion Relationships and Homotopy Issues in Shape Interpolation 209

3.1 Behavior of Interpolation Methods

In the following, we will discuss some results obtained with the interpolation
methods described in Sec. 2.

Figure 1 displays and interpolation computed using the Hausdorff distance
method with convex mask (computed as described in Sec.2). The two input
slices, Fig. 1(a) and Fig. 1(k), have the same homotopy. The intermediate slices,
with α-values from 0.1 to 0.9, are the interpolated ones. We can clearly see
that the homotopy changes in the sequence of images. The hole disappears in
Figs. 1(c)-(i). We can also mention that the interpolated shapes do not sometimes
correspond satisfactorily to the shapes observed in the input slices.

We use in this paper homotopy trees [12] to easily visualize the homotopy of
an image. Two binary images are homotopic if their respective homotopy trees
are the same1.

Fig. 1. Sequence of interpolated slices obtained using interpolation based on Hausdorff
distance with convex hull and their homotopy trees

A result computed using the median set method (with affine transformation)
is shown in Fig. 2. The input slices are displayed in Fig. 2(a) and in Fig. 2(j). In

1 Nodes corresponding to the background and holes appear in black, and nodes corre-
sponding to grains are displayed in white. The upper nodes of the trees correspond
to the outer background.

210 J. Vidal, J. Crespo, and V. Maojo

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Sequence of interpolated slices generated by median set-based interpolation
method and their homotopy trees

this example, the homotopy of the input slices is also the same. However, we can
see clearly that the homotopy of the interpolated slices of Figs. 2(c)-(f) differs
from that of the input slices: the ring-shaped connected component “breaks”,
and it does not surround a hole inside.

Figure 3 shows a result computed using the interpolation function method. In
this case the homotopy changes several times in the interpolated image sequence,
as can be clearly observed in the associated homotopy trees.

3.2 The Inclusion Property and Experimental Results

We have proposed [14] an interpolation technique that satisfies the inclusion
property that is stated next. It is not our intention to treat here the details of the
algorithm, but to emphasize that this property can improve shape interpolation
results in a relatively easy manner.

Inclusion Property: Suppose A1 and B1 are two sets of the input slice 1,
such as A1 ⊂ B1, and suppose C2 and D2 are two sets of input slice 2, such as
C2 ⊂ D2. If there is a correspondence between these two pairs (i.e., we want to
interpolate A1 with C2, and B1 with D2), then the following condition should
be satisfied:

Interpolate(A1 \ B1, C2 \ D2) = Interpolate(A1, C2) \ Interpolate(B1, D2) (6)

Inclusion Relationships and Homotopy Issues in Shape Interpolation 211

(a) α=0.0 (b) α=0.1 (c) α=0.2 (d) α=0.3 (e) α=0.4 (f) α=0.5

(g) α=0.6 (h) α=0.7 (i) α=0.8 (j) α=0.9 (k) α=1.0

Fig. 3. Sequence of interpolated slices generated by the interpolation function method
and their homotopy trees. (Note that there are two pores in image (d) and three grains
in images (i) and (j).)

where “Interpolate” denotes our interpolation technique, and “\” symbolizes the
set difference. The arguments of “Interpolate” are the two input images, and the
result will be an interpolated slice.

The inclusion property is illustrated in Fig. 4. If (6) is satisfied, then image
in Fig. 4(h) is equal to the image in Fig. 4(b) minus the image in Fig. 4(d).

Our interpolation technique is based on median sets [4]. Moreover, this tech-
nique processes recursively the connected components (CCs) of the slices apply-
ing (6) to the inner holes and inner grains of the images. The pseudo-code of
the algorithm that implements this technique is shown in the Appendix, and a
complete description can be found in [14]. The recursive application of (6) is
performed by the last sentence of the while loop in the pseudo-code.

We will discuss next the performance of our technique over the images pre-
viously used in Sec. 3.1, and with a more complex case as well.

Figure 5 and Fig. 6 display the application of our technique to the cases
visualized in Fig. 2 and Fig. 3, respectively. In both cases, the input slices contain
a ring-like CC (a grain with an hole inside). Our technique first interpolates
the filled grains. We suppose that the correspondence between them have been
established using a matching procedure, and that the CCs are aligned (see [14]
for details).

Then, in the next recursive iteration, pores are independently interpolated.
The overall interpolation result is the result of interpolated grain filled minus
the result of the interpolated pore. This is clearly what (6) establishes. We can

212 J. Vidal, J. Crespo, and V. Maojo

(a) A1 (b) Interpolate(A1, C2) (c) C2

(c) B1 (d) Interpolate(B1, D2) (e) D2

(g) A1 \ B1 (h) Interpolate(A1 \ B1, C2 \ D2) (i) C2 \ D2

Fig. 4. An example of the inclusion property

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Interpolated slices using our technique (compare with Fig. 2)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6. Interpolated slices using our technique (compare with Fig. 3)

observe that all intermediate interpolated slices are a grain with an hole inside
(the same homotopy as that of the input slices), and that these results compare
favorably with those obtained in Fig. 2 and in Fig. 3.

Inclusion Relationships and Homotopy Issues in Shape Interpolation 213

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7. Interpolation of nested CCs

Finally, we will present the application of expression (6) of the inclusion
property to a more complex situation. In Fig. 7, we deal with nested CCs. In
this case, our technique applies recursively (6) to the inner structures. Again,
we can say our technique obtains satisfactory results.

4 Conclusions

In this paper we have studied homotopy related issues that arise in binary image
interpolation. We have commented the behavior of some interpolation methods
in some situations, and we have observed that problems can sometimes arise.
We have discussed a technique based on median set that applies a relatively
simple inclusion property, which can significantly improve the experimental re-
sults. Nevertheless, all homotopy issues are not completely solved. A complete
treatment of them would require to consider how the connected components are
matched and aligned, and the relative position of the nested shapes.

Acknowledgements. This work has been supported in part by the University
of Concepción (Chile), by the MECESUP programme of Chilean Education Min-
istry, and by the Artificial Intelligence Laboratory, School of Computer Science
at “Universidad Politécnica de Madrid”.

References

[1] Meijering, E.: A chronology of interpolation: From ancient astronomy to modern
signal and image processing. Proceedings of the IEEE 90 (2002) 319–342

[2] Soille, P.: Spatial distributions from contour lines: an efficient methodology based
on distance transformations. Journal of Visual Communication and Image Rep-
resentation 2 (1991) 138–150

[3] Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based interpolation. IEEE Com-
puter Graphics and Application 12 (1992) 69–79

[4] Beucher, S.: Interpolations d’ensembles, de partitions et de fonctions. Technical
Report N-18/94/MM, Centre de Morphologie Mathmatique (1994)

[5] Guo, J.F., Cai, Y.L., Wang, Y.P.: Morphology-based interpolation for 3D medical
image reconstruction. Computarized Medical Imaging and Graphics 19 (1995)
267–279

214 J. Vidal, J. Crespo, and V. Maojo

[6] Iwanowski, M.: Application of Mathematical Morphology to Image Interpola-
tion. PhD thesis, School of Mines of Paris - Warsaw University of Technology
(2000)

[7] Lee, T.Y., Wang, W.H.: Morphology-based three-dimensional interpolation. IEEE
Transactions on Medical Imaging 19 (2000) 711–721

[8] Meyer, F.: Interpolations. Technical Report N-16/94/MM, Centre de Morphologie
Mathmatique (1994)

[9] Serra, J.: Interpolations et distances of Hausdorff. Technical Report N-15/94/MM,
Centre de Morphologie Mathmatique (1994)

[10] Serra, J.: Mathematical Morphology. Volume I. London: Academic Press (1982)
[11] Serra, J., ed.: Mathematical Morphology. Volume II: Theoretical advances. Lon-

don: Academic Press (1988)
[12] Soille, P.: Morphological Image Analysis: Principles and Applications. 2nd edn.

Springer-Verlag (2003)
[13] Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing. SPIE

Press, Bellingham, WA (2003)
[14] Vidal, J., Crespo, J., Maojo, V.: Recursive interpolation technique for binary im-

ages based on morphological median sets. In: accepted in International Symposium
on Mathematical Morphology (ISMM’05), Paris, France. (2005)

[15] Serra, J.: Hausdorff distances and interpolations. In Heijmans, H.J., Roerdink,
J.B., eds.: Mathematical Morphology and its Applications to Images and Sig-
nal Processing, Dordrecht, The Netherlands. Kluwer Academics Publishers
(1998)

[16] Iwanowski, M.: Morphological binary interpolation with convex mask. In: Pro-
ceedings International Conference on Computer Vision and Graphics, Zakopane,
Poland. (2002)

[17] Iwanowski, M., Serra, J.: The morphologycal-affine object deformation. In
John Goutsias, L.V., Bloomberg, D.S., eds.: International Symposium on Mathe-
matical Morphology, Palo Alto, CA. Kluwer Academics Publishers (2000) 445

[18] Migeon, B., Charreyron, R., Deforge, P., Marché, P.: Improvement of morphology-
based interpolation. In: Proceedings of the 20th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. (1998) 585–587

[19] Chatzis, V., Pitas, I.: Interpolation of 3d binary images based on morphological
skeletonizations. In: Proceedings IEEE International Conference on Multimedia
Computing Systems, Florence, Italy. Volume II. (1999) 939–943

[20] Chatzis, V., Pitas, I.: Interpolation of 3D binary images based on morphological
skeletonizations. IEEE Transaction on Medical Imaging 19 (2000) 699–710

Appendix: Interpolation Algorithm Pseudo-Code

Our interpolation technique [14] combines the use of median sets with the re-
cursive application of (6), i.e., the inclusion property.

The algorithm consists of three main steps: (A) the separation of outer filled
CCs within the input slices, (B) the matching between the fill CCs of input
slices, and (C) the interpolation step that includes the recursive application of
(6). The CCs matching step, step (B), determines the correspondence between
the CCs (grains or pores) of the two input slices at each recursive iteration.

Inclusion Relationships and Homotopy Issues in Shape Interpolation 215

INTERPOLATOR(Current S1 : Slice, Current S2 : Slice) : Slice
≡

// (A) Separation of outer CCs
OS1 = Extract Outer CC(Current S1);
OS1 = Extract Outer CC(Current S2);
// (B) Matching
P = MATCHING(OS1, OS2);
// P is a vector of pairs of matched CCs and their MSPs
S = ∅; // init result binary image (set notation)
// (C) Interpolation
while P 	= ∅ do

(FS1, MSP1, FS2, MSP2) = Extract Pair CCs(P);
// (FS1, FS2) is a pair of matched filled CCs
// Computation of median set MS
MS = MSF(FS1, MSP1, FS2, MSP2);
// MSF : median set function using MSPs
// Holes are stored as CCs
HS1 = (FS1 ∩ Current S1)C \ [FS1]C ;
HS2 = (FS2 ∩ Current S2)C \ [FS2]C ;
// Result image is updated; inner structures
// (holes and grains) are treated recursively
if ((HS1 = ∅) ∧ (HS2 = ∅))

then S = S ∪ MS;
else S = S ∪ [MS \ INTERPOLATOR(HS1, HS2)]; // Recursive call

fi
od
Return(S);

(a) OS1 (b) OS2 (c) Aligned CCs (d) Median set MS (e) HS1 (f) HS2

Fig. 8. Algorithm execution example

In the following, we will briefly comment the execution of the algorithm applied
to the input slices of Fig. 7. Input slices are those in Fig. 7(a) and Fig. 7(g).
In the first iteration, step (A) extracts the outer filled grains (Fig. 8(a) and
Fig. 8(b)) of the input slices. The matching step, step (B), matches these ex-
tracted CCs (Fig. 8(c) displays the CCs superimposed and aligned as part of the
matching process; see details in [14]). Step (C), the main interpolation step, first
computes the median set of the aligned filled CCs (Fig. 8(d)). Then, the inner
grains and pores are extracted and complemented (Fig. 8(e) and Fig. 8(f)), and
the recursive call is performed. Finally, the interpolated slice after all recursive
iterations (in this case, 4 iterations) can be found in Fig. 7(d).

Discrete Bisector Function and Euclidean
Skeleton

Michel Couprie1,2 and Rita Zrour1,2

1 Laboratoire A2SI, Groupe ESIEE, BP99, 93162 Noisy-le-Grand Cedex France
2 IGM, Unité Mixte de Recherche CNRS-UMLV-ESIEE UMR 8049

m.couprie@esiee.fr
zrour@llaic3.u-clermont1.fr

Abstract. We propose a new definition and an exact algorithm for the
discrete bisector function, which is an important tool for analyzing and
filtering Euclidean skeletons. We also introduce a new thinning method
which produces homotopic discrete Euclidean skeletons. Unlike previouly
proposed approaches, this method is still valid in 3D.

1 Introduction

The notion of skeleton plays a major role in shape analysis. It has been intro-
duced by Blum [5] in 1961 and is the subject of an abundant literature, which
deals with both metrical and topological aspects (see e.g. [1, 2, 6, 12, 13, 15, 16,
19, 21, 25, 26]). In this paper, we focus on skeletons in the discrete grid Z2 or Z3,
which are centered in the shape with respect to the Euclidean distance, and
which have the same topology as the original shape.

Introduced by Talbot and Vincent [25] and generalizing a notion proposed
by Meyer [18], the bisector function can play an important role in analyzing and
filtering skeletons [1, 2, 19]. Informally, the bisector function associates to each
object point x the maximal angle formed by x (as the vertex) and the points of
the background which are nearest to x. Until now, the algorithms proposed to
compute the bisector function in Z2 were based on the use of vectors produced
by distance transformation algorithms (e.g., [7]). To each object point, with such
algorithms, only one vector indicates the location of a closest background point,
and some other points at the same distance may be ignored. In fact, the aim of
previous approaches was to compute an approximation of the bisector function
as defined in a continuous framework.

This paper contains two original contributions. First, we propose a new def-
inition and an exact algorithm to compute a discrete bisector function. This al-
gorithm was inspired by the methods recently introduced [6, 21] to compute the
exact Euclidean medial axis, and is also based on a pre-computed look-up table.
Second, we introduce a new thinning method which produces homotopic discrete
Euclidean skeletons. Unlike previously proposed approaches, this method is still
valid in 3D.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 216–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Discrete Bisector Function and Euclidean Skeleton 217

2 Basic Notions

In this section, we recall some basic metrical and topological notions for binary
images [8, 15]. For simplicity, we limit this presentation to the 2D case.

We denote by Z the set of integers, by N the set of nonnegative integers, and
by N∗ the set of strictly positive integers. We denote by E the discrete plane Z2.
A point x in E is defined by (x1, x2) with xi in Z. Let x, y ∈ E, we denote by
d2(x, y) the square of the Euclidean distance between x and y, that is, d2(x, y) =
(x1 − y1)2 + (x2 − y2)2. Let Y ⊂ E, we denote by d2(x, Y) the square of the
Euclidean distance between x and the set Y , that is, d2(x, Y) = min{d2(x, y); y ∈
Y }. Let X ⊂ E (the “object”), we denote by D2

X the map from E to N which
associates, to each point x of E, the value D2

X(x) = d2(x,X), where X denotes
the complementary of X (the “background”). The map D2

X is called the (squared
Euclidean) distance map of X. Let x ∈ E, r ∈ N∗, we denote by Br(x) the ball
of (squared) radius r centered on x, defined by Br(x) = {y ∈ E, d2(x, y) < r}.
Notice that, for any point x in X, the value D2

X(x) is precisely the radius of a
ball centered on x and included in X, which is not included in any other ball
centered on x and included in X.

Let us recall the notion of medial axis (see also [20, 25]). Let X ⊆ E, x ∈ X,
r ∈ N∗. A ball Br(x) ⊆ X is maximal for X if it is not strictly included in any
other ball included in X. The medial axis of X, denoted by MA(X), is the set
of the centers of all the maximal balls for X (see Fig. 1d, see also Fig. 2).

Efficient algorithms have been proposed to compute exact squared Euclidean
distance maps [22, 23], and also to extract the exact Euclidean medial axis of a
shape, from an exact squared Euclidean distance map and using pre-computed
look-up tables [6, 21].

In discrete spaces, it is well known that the topology of the medial axis is
generally not the same as the topology of the original object. In particular, if X is
connected, MA(X) is generally not connected (see Fig. 1d). Let us now introduce
some topological notions in Z2 that we use in the sequel.

We consider the two neighborhood relations Γ4 and Γ8 defined by, for each
point x ∈ E: Γ4(x) = {y ∈ E; |y1−x1|+|y2−x2| ≤ 1}, Γ8(x) = {y ∈ E; max(|y1−
x1|, |y2−x2|) ≤ 1}. In the following, we will denote by n a number such that n = 4
or n = 8. We define Γ ∗

n(x) = Γn(x)\{x}. The point y ∈ E is n-adjacent to x ∈ E
if y ∈ Γ ∗

n(x). An n-path is a sequence of points x0 . . . xk with xi n-adjacent to xi−1
for i = 1 . . . k.

Let X be a non-empty subset of E. We say that two points x, y of X are
n-connected in X if there is an n-path in X between these two points. This
defines an equivalence relation. The equivalence classes for this relation are the
n-connected components of X, or n-components in short. The set X is said to be
n-connected if it consists of exactly one n-component. The set composed of all
n-components of X which are n-adjacent to a point x is denoted by Cn[x,X].

In order to have a correspondence between the topology of X and the topology
of X, we have to consider two different kinds of adjacency for X and X [15]: if
we use the n-adjacency for X, we must use the n-adjacency for X, with (n, n) =
(8, 4) or (4, 8). In the sequel, we assume that the adjacency pair (n, n) = (8, 4)

218 M. Couprie and R. Zrour

(a) (b) (c) (d) (e)

Fig. 1. (a): a set X (in white); (b): an homotopic thinning of X; (c): ultimate ho-
motopic skeleton of X; (d): medial axis of X; (e): ultimate homotopic skeleton of X

constrained by the medial axis of X. In (b,c,d,e) the original set X appears in dark
gray for comparison

has been chosen and we do not write the subscripts n, n unless necessary; but
the results also hold for (n, n) = (4, 8).

Informally, a simple point p of a discrete object X is a point which is “inessen-
tial” to the topology of X. In other words, we can remove the point p from X
without “changing the topology of X”. The notion of simple point is fundamen-
tal to the definition of topology-preserving transformations in discrete spaces.
We now give a definition and a local characterization of simple points in E = Z2.
For the 3D case, see [3].

The point x ∈ X is simple (for X) if each n-component of X contains exactly
one n-component of X \{x} and if each n-component of X∪{x} contains exactly
one n-component of X. Let X ⊆ E and x ∈ E, the two connectivity numbers are
defined as follows (#X stands for the cardinality of X):

T (x,X) = #Cn[x, Γ ∗
8 (x) ∩ X]; T (x,X) = #Cn[x, Γ ∗

8 (x) ∩ X].
The following property allows us to locally characterize simple points [15, 3],
hence to implement efficiently topology preserving operators:

x ∈ E is simple for X ⊆ E ⇔ T (x,X) = 1 and T (x,X) = 1.
Let X be any finite subset of E. The subset Y of E is an homotopic thinning

of X if Y = X or if Y may be obtained from X by iterative deletion of simple
points. We say that Y is an ultimate homotopic skeleton of X if Y is an homotopic
thinning of X and if there is no simple point for Y .
Let C be a subset of X. We say that Y is an ultimate homotopic skeleton of X
constrained by C if C ⊆ Y , if Y is an homotopic thinning of X and if there is no
simple point for Y in Y \C (see e.g. [12, 26]). The set C is called the constraint
set relative to this skeleton.

3 The Bisector Function: New Definition and Exact
Algorithm

Let X be a non-empty subset of E, and let x ∈ X. The downstream of x in X,
denoted by Ds(x,X) or by Ds(x) when no confusion may occur, is the set of
points y of X which are at minimal distance from x; more precisely, Ds(x,X) =
{y ∈ X, ∀z ∈ X, d2(y, x) ≤ d2(z, x)}. For example in Fig. 2, we have Ds(x) =

Discrete Bisector Function and Euclidean Skeleton 219

x

y

c
a

b

α

Fig. 2. A set X (full ellipsis, represented by its border) and its medial axis (horizontal
line), a point x and its downstream {a, b}, a point y and its downstream {c}. Notice
that y does not belong to the medial axis, since no ball centered on y and included
in X is maximal for X

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 4 4 4 4 4 4 4 4 4 4 1 0

0 1 4 9 9 9 9 9 9 9 9 4 1 0

0 1 4 9 16 16 16 16 16 16 9 4 1 0

0 1 4 9 16 16 16 16 16 16 9 4 1 0

0 1 4 9 9 9 9 9 9 9 9 4 1 0

0 1 4 4 4 4 4 4 4 4 4 4 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

y

x

Fig. 3. A set X and its distance map D2
X . The point x belongs to the medial axis

of X (it is the center of a maximal ball for X, delineated in white). The downstream
of x is the singleton {y}

{a, b} and Ds(y) = {c}. The bisector angle of a point x in X can be defined
informally, in the continuous framework, as the maximal unsigned angle formed
by x (as the vertex) and any two points in Ds(x). In Fig. 2, the bisector angle
of x is α, and the bisector angle of y is 0.

In the continuous framework, a point x which belongs to the medial axis is
characterized by the fact that Ds(x) contains strictly more than one point, in
other words, its bisector angle is non-zero. In the discrete case such a character-
ization is not possible, due to configurations like Fig. 3, which are very common.
At least, we want such medial axis points to have a non-zero bisector angle; this
motivates the introduction of the following notion.

Let X ⊂ E, and let x ∈ X. The extended downstream of x in X, denoted by
EDs(x,X) or by EDs(x) when no confusion may occur, is the union of the sets
Ds(y,X), for all y in Γ4(x).

Now we can propose our definition of the discrete bisector function.

220 M. Couprie and R. Zrour

Let X ⊂ E, and let x ∈ X. The bisector angle of x in X, denoted by θX(x),
is the maximal unsigned angle between the vectors

→
xy,

→
xz, for all y, z in EDs(x).

The bisector function of X, denoted by θX , is the function which associates to
each point x of X, its bisector angle in X.

We now propose a method to exactly and efficiently compute the bisector
function, with the help of a squared Euclidean distance map. The following
property, which may be easily established, is the key of the method.

Property 1. Let X ⊂ E, let x ∈ X, and let y ∈ E. The point y belongs to the
downstream of x if and only if d2(x,X) = d2(x, y) and d2(y,X) = 0.

Now, observe that for any given point x ∈ X, the value R = d2(x,X) =
D2

X(x) can be read in a pre-computed squared Euclidean distance map. The
positions of the points y such that R = d2(x, y) can be found by solving the
diophantine equation (x1 − y1)2 + (x2 − y2)2 = R, or more simply α2 + β2 = R.
This amounts to compute the different decompositions of a given integer into a
sum of two squares (or three squares in 3D), a problem which has been studied
extensively (see [14]).

Furthermore, these decompositions can also be pre-computed and stored in
a look-up table. The program which computes this look-up table is very simple
(see Annex). Notice that the same look-up table was used by Fontoura-Costa
et al. to compute an exact Euclidean dilation[17]. Once all decompositions are
known, one must take into account the different symmetries of the space (their
number is 8 for Z2, 48 for Z3) and check those positions y which satisfy the
second condition of prop. 1: d2(y,X) = 0, again using the distance map.

The following algorithm summarizes the computation of the extended down-
stream of a given point x ∈ X.

Procedure ExtendedDownstream (Input D2
X , x, Output EDs)

01. EDs ← ∅
02. ForEach v ∈ Γ4(x)
03. T ← {(z1, z2) ∈ Z2; z1 ≥ z2 ≥ 0; z2

1 + z2
2 = D2

X(v)} (from LUT)
04. T ′ ← {(z1, z2) ∈ Z2; (|z1|, |z2|) is a permutation of an element of T}
05. ForEach z ∈ T ′ Do
06. If D2

X(v + z) = 0 Then EDs ← EDs ∪ {v + z}

The last step to obtain the bisector angle consists in the computation of the
maximum unsigned angle between all the pairs of vectors {→

xy,
→
xz} for all y, z

in EDs(x). If we denote by k the number of points in EDs(x), the number of
such pairs is quadratic with respect to k, more precisely, it is equal to k(k−1)/2.
By normalizing all these vectors, we can easily see that the problem of finding
a maximum angle reduces to the problem of finding a maximum diameter of a
convex polygon in 2D. This last problem has been solved in 1978 by Shamos [24],
who provided a simple linear-time algorithm (that is, in O(k)). In 3D, the prob-
lem is more complicated but some efficient algorithms (in O(n log n) or less) have
been proposed for the maximal diameter of a set of points, see e.g. [4]. However,
in practice, the mean cardinal of the extended downstream for a given shape is

Discrete Bisector Function and Euclidean Skeleton 221

0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 1 0 0 0 0 0 2

0 1 1 1 1 1 1 1 0 0 3

0 1 1 1 1 1 1 1 1 0 4

0 1 1 1 1 1 1 1 1 0 5

0 0 1 1 1 1 0 1 0 0 6

0 0 0 1 1 1 1 1 0 0 7

0 0 0 0 0 0 0 0 0 0 8

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 1 0 0 0 0 0 2

0 1 2 4 2 1 1 1 0 0 3

0 1 4 8 5 4 4 2 1 0 4

0 1 2 5 5 2 1 2 1 0 5

0 0 1 2 4 1 0 1 0 0 6

0 0 0 1 1 1 1 1 0 0 7

0 0 0 0 0 0 0 0 0 0 8

1 2 3 4 5 6 7 8 9 10

Fig. 4. Left: a set X (in white); Right: the squared Euclidean map of X. The point
x = (4, 5) is circled in black, the points y1 = (6, 2) and y2 = (3, 7) are circled in white

(a) (b) (c) (d)

Fig. 5. (a): a set X and its medial axis (in black); (b): the bisector function θX (dark
colors correspond to wide angles); (c): filtered medial axis, based on the values of θX ;
(d): detail of the non-filtered and filtered medial axis

usually quite small. Thus, the straightforward algorithm which considers all the
pairs of points in the extended downstream is the best choice in most cases.

We illustrate this procedure using the example of Fig. 4. We consider the
point x = (4, 5), which is circled in black in the figure. Thus, Γ4(x) = {x, x1,
x2, x3, x4} with x1 = (5, 5), x2 = (4, 4) x3 = (3, 5), x4 = (4, 6). Let us begin
with x = (4, 5), and D2

X(x) = 5. From the Look-up table (see Fig. 9), we see
that the only decomposition of 5 into a sum of two squares is 22 + 12. Applying
the 8 symmetries of Z2, we find the offsets {(2, 1), (−2, 1), (−2,−1), (2,−1),
(1, 2), (−1, 2), (−1,−2), (1,−2)}, hence the points {(6, 6), (2, 6), (2, 4), (6, 4),
(5, 7), (3, 7), (3, 3), (5, 3)}. Among these points, only (2, 6) and (3, 7) are in the
downstream of x since D2

X [(2, 6)] = D2
X [(3, 7)] = 0. Carrying on with the points

x1, x2, x3, x4, we find that EDs(x) = {(2, 6), (3, 7), (7, 6), (2, 2), (6, 2)}. Let
y1 = (6, 2) and y2 = (3, 7), it may be easily checked that the maximum unsigned
angle corresponds to the couple of vectors { →

xy1,
→
xy2} and is close to 3.02 rad.

In Fig. 5, we show a set X together with its medial axis (a) and the bisector
function θX (b). We illustrate the use of this function to eliminate spurious
points of the medial axis: in (c), we show the points of the medial axis (in black)

222 M. Couprie and R. Zrour

(a) (b)

(c) (d)

Fig. 6. (a): a view of a subset X of Z
3 (vertebra), generated thanks to a topologically

sound “Marching Cubes-like” algorithm [11]; (b,c,d): the bisector function, illustrated
in an “X-ray” manner: the gray level of a point corresponds to the average of the
bisector angles on a straight line parallel to one of the three axes

which have a bisector angle greater than 0.7 rad. A zoomed detail of both axes
is shown in (d). Notice that only the bisector angles of the medial axis points
need to be computed for this application.

The definition and exact computation of this discrete bisector function can
be straightforwardly extended to Z3. To conclude this section, we present in
Fig. 6 an illustration of our bisector function of a three-dimensional object (a
vertebra). As a matter of fact, the number of decompositions of an integer k
grows is a “reasonable way” when k increases, see [10] for more details. The size
of the original image of Fig. 6 is 122 × 144 × 53 = 931104 points, among which
103302 are object points. On a standard PC, computing the bisector function
on all object points for this image takes 2.9 s, and 0.5 s for only medial axis
points. The look-up table used for processing this image occupies 82750 bytes of
memory.

Discrete Bisector Function and Euclidean Skeleton 223

4 New Distance-Guided Homotopic Thinning Algorithm

The skeletonization methods which are based on homotopic thinnings, in the
sense of section 2, provide a formal guarantee that the skeleton and the original
object have the same topology. The simplest such method consists in computing
an ultimate homotopic skeleton of the object X constrained by the medial axis
of X, that is, removing iteratively simple points from X which do not belong
to MA(X), taking the distance map as a priority function in order to select
first the points which are closest to the background. This can be done using the
following procedure, with P = DX and Y = MA(X).

Procedure UltimateSkeleton (Input X, P , Y , Output Z)
01. Z ← X
02. Q ← {(P (x), x); where x is any point of X \ Y }
03. While Q �= ∅ Do
04. choose (p, x) in Q such that p is minimal
05. If x is simple for Z Then
06. Z ← Z \ {x}
07. Q ← Q ∪ {(P (y), y); where y ∈ Γ (x) ∩ (Z \ Y)}

The drawback of this method has been well analyzed in [25]. Roughly speak-
ing the method does not guarantee that points of the skeleton outside the medial
axis are “well centered” in the object; more precisely, such a point may have a
null or quasi-null bisector angle.

(a) (b) (c) (d) (e) (f)

Fig. 7. (a): a set X (in black); (b): isolines of the Euclidean map DX ; (c): a constraint
set Y (four points located at the “corners” of the shape); (d): homotopic skeleton of X

guided by D2
X and constrained by Y ; (e): the bisector function of X; (f): the result of

our algorithm EuclideanSkeleton

Let us consider the object X in Fig. 7a, and the constraint set Y in Fig. 7c,
which idealizes a filtered medial axis of X. The result of UltimateSkeleton(X,
DX , Y) is depicted in Fig. 7d. The isolines of the distance map DX and the
bisector function of X are depicted in Fig. 7b,e respectively, for comparison.

224 M. Couprie and R. Zrour

25169

25169

188

1385

852

13

0 1 4

0 1 4

0 1 4

0 1 2

0 0 1 v

w

z

Fig. 8. A detail of the preceding example

To understand what happens, let us concentrate on a detail of the above
example, depicted in Fig. 8. The numbers correspond to the distance map values.
The circled point with value 1 is one of the points belonging to the constraint
set Y . Suppose that all the points with a value below 8 have been processed by
the homotopic thinning algorithm. At this step, the points in gray are still in X,
as well as the two circled points (the point at 1 because it belongs to Y , and
the one at 4 because it is not a simple point). All other points are not in X.
Obviously, the point v at 8 adjacent to z at 4 will be selected before its neighbor w
at 9, and since it will be a simple point at this stage, it will be deleted. Such
a behaviour will be reproduced at later stages, generating a diagonal branch
of the skeleton, and is in contradiction with a property of the skeleton in the
continuous framework: informally, skeleton branches follow lines of steepest slope
of the Euclidean distance map. Let us compute the slopes of the segments zv
and zw in our example: (

√
8 −

√
4)/1 ≈ 0.83, and (

√
9 −

√
4)/

√
2 ≈ 0.71. Thus,

the point v should be kept in the skeleton and the point at w deleted according
to this criterion.

In [25], Talbot and Vincent propose the following strategy to cope with this
problem. During the thinning process guided by the distance map, having de-
tected a point x which belongs to the skeleton (either a point of the constraint
set or a non-simple point), the neighbor of x which corresponds to the steep-
est ascending slope is dynamically added to the constraint set. Although this
method gives satisfactory results in 2D, it cannot be extended to the 3D case.

We propose another strategy which gives equivalent results in 2D and which
also applies to the 3D case. The idea is to define a priority function which
takes into account both the distance map and an auxiliary function defined in
the neighborhood of each dynamically detected skeleton point. Let x be such a
point, then to any neighbor y of x which is still in X and not in the constraint
set Y , we associate the value py = DX(x) + (DX(y) − DX(x))/d(x, y), with
DX(x) =

√
D2

X(x) and d(x, y) =
√

d2(x, y). The new priority function, for the
point y, is defined as min(py, DX(y)). We see that (DX(y) − DX(x))/d(x, y) is
the slope of xy, thus the neighbors of x will be examined in increasing order of
slope, since the value py is always less or equal to the corresponding distance
value DX(y) (for all x, y in Z2 or Z3 with x �= y, we have d(x, y) ≥ 1).

For example, in the above situation, we have DX(v) =
√

8 ≈ 2.83, DX(w) =
3, pv =

√
4+(

√
8−

√
4)/1 =

√
8 and pw =

√
4+(

√
9−

√
4)/

√
2 ≈ 2.71; thus the

point w will be selected before v with this strategy. Our algorithm is given below.

Discrete Bisector Function and Euclidean Skeleton 225

Procedure EuclideanSkeleton (Input X, DX , Y , Output Z)
01. Z ← X

02. Q ← {(DX(x), x) where x is any point of Z \ Y }
03. R ← {(px, x) where x is any point of Z \ Y adjacent to Y ,
04. and where px = min{DX(z) + (DX(x) − DX(z))/d(x, z), z ∈ Y } }
05. While Q �= ∅ Or R �= ∅ Do
06. choose (p, x) in Q ∪ R such that p is minimal
07. If x ∈ Z \ Y Then
08. If x is simple for Z Then
09. Z ← Z \ {x}
10. Else
11. Y ← Y ∪ {x}
12. R ← R ∪ {(py, y), where y ∈ Γ (x) ∩ (Z \ Y)
13. and where py = DX(x) + (DX(y) − DX(x))/d(x, y)}

In Fig. 7f, we see the result of this algorithm applied to the preceding example.
Compare the shape of this skeleton with the distance map and with the bisector
function of X depicted in 7b,e respectively. The complexity of this algorithm
depends on the data structure used to represent the sets Q and R. To be more
precise, this data structure must allow to perform the choice in line 6 efficiently,
and also the insertions in lines 11 and 12. Using for example balanced binary
trees [9], the overall complexity of the algorithm is in O(n log n), where n is the
number of image points.

5 Conclusion

We introduced a new definition and an exact algorithm for the discrete bisector
function, and proposed a new thinning algorithm which produces homotopic dis-
crete Euclidean skeletons. Both constitute significant improvements with respect
to previous approaches, and apply to the 2D and 3D cases.

In an extended version of this paper [10], we will analyse more deeply the
difference between the proposed approach and the previous ones, we will present
more results and applications (especially with “real world” data and in 3D), and
we will analyze the performance of these algorithms both in terms of time and
memory space.

References

1. D. Attali, J.O. Lachaud: “Delaunay Conforming Iso-surface, Skeleton Extraction
and Noise Removal”, Computational Geometry: Theory and Applications, Vol. 19,
pp. 175-189, 2001.

2. D. Attali, A. Montanvert: “Modelling noise for a better simplification of skeletons”,
Procs. International Conference on Image Processing , Vol. 3, pp. 13-16, 1996.

3. G. Bertrand: “Simple points, topological numbers and geodesic neighborhoods in
cubic grids”, Pattern Recognition Letters, Vol. 15, pp. 1003-1011, 1994.

226 M. Couprie and R. Zrour

4. S.N. Bespamyatnikh, “An efficient algorithm for the three-dimensional diameter
problem”, Procs. ACM-SIAM symp. on discrete algorithms, pp. 137-146, 1998.

5. H. Blum, “An associative machine for dealing with the visual field and some of
its biological implications”, Biological prototypes and synthetic systems, Vol. 1,
pp. 244-260, 1961.

6. G. Borgefors, I. Ragnemalm, G. Sanniti di Baja, “The Euclidean distance trans-
form: finding the local maxima and reconstructing the shape”, Procs. of the 7th
Scand. Conf. on image analysis, Vol. 2, pp. 974-981, 1991.

7. P.E. Danielsson: “Euclidean distance mapping”, Computer Graphics and Image
Processing , 14, pp. 227-248, 1980.

8. J.M. Chassery, A. Montanvert: Géométrie discrète, Hermès, 1991.
9. T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to algorithms, MIT Press,

1990.
10. M. Couprie, R. Zrour: “Discrete bisector function and Euclidean skeleton in 2D

and 3D”, report IGM2004-12 of the Institut Gaspard Monge (University of Marne-
la-Vallée), http://www-igm.univ-mlv.fr/LabInfo/rapportsInternes/2004/12.pdf,
2004.

11. X. Daragon, M. Couprie, G. Bertrand: “Discrete frontiers”, Springer (Ed.), Discrete
Geometry for Computer Imagery , Springer LNCS, Vol. 2886, pp. 236-245, 2003.

12. E.R. Davies, A.P.N. Plummer: “Thinning algorithms: a critique and a new method-
ology”, Pattern Recognition, Vol. 14, pp. 53-63, 1981.

13. Y. Ge, J.M. Fitzpatrick: “On the generation of skeletons from discrete Euclidean
distance maps”, IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. 18, No. 11, pp. 1055-1066, 1996.

14. G.H. Hardy, E.M. Wright: An introduction to the theory of numbers, Oxford Uni-
versity Press, 1938.

15. T. Yung Kong, A. Rosenfeld: “Digital topology: introduction and survey”, Com-
puter Vision, Graphics and Image Processing , Vol. 48, pp. 357-393, 1989.

16. L. Lam, S-W. Lee, C.Y. Suen: “Thinning methodologies - a comprehensive survey”,
IEEE PAMI , Vol. 14, No. 9, pp. 869-885, 1992.

17. M. Luppe, L. da Fontoura Costa, V. Obac Roda: “Parallel implementation of exact
dilations and multi-scale skeletonization”, Real-Time Imaging , Vol. 9, pp. 163-169,
2003.

18. F. Meyer, Cytologie quantitative et morphologie mathématique, PhD thesis, École
des mines de Paris, 1979.

19. G. Malandain, S. Fernández-Vidal, “Euclidean Skeletons”, Image and vision com-
puting , Vol. 16, pp. 317-327, 1998.

20. A. Rosenfeld, A.C. Kak: Digital Image processing , Academic Press, 1982.
21. E. Rémy, E. Thiel: “Exact Medial Axis with Euclidean Distance”, to appear in

Image and Vision Computing, 2004.
22. T. Saito, J.I. Toriwaki: “New algorithms for Euclidean distance transformation of

an n-dimensional digitized picture with applications”, Pattern Recognition, Vol. 27,
pp. 1551-1565, 1994.

23. T. Hirata: “A unified linear-time algorithm for computing distance maps”, Infor-
mation Processing Letters, Vol. 58(3), pp. 129-133, 1996.

24. M.I. Shamos: Computational geometry, PhD thesis, Yale University, 1978.
25. H. Talbot, L. Vincent: “Euclidean skeletons and conditional bisectors”, Proceedings

of VCIP’92, SPIE , Vol. 1818, pp. 862-876, 1992.
26. L. Vincent: “Efficient Computation of Various Types of Skeletons”, Proceedings of

Medical Imaging V, SPIE , Vol. 1445, pp. 297-311, 1991.

Discrete Bisector Function and Euclidean Skeleton 227

Annex: Building the Look-Up Table

Procedure Build2dLUT (Input N , Output LUT)
01. n ← '

√
N(; For i From 0 To N Do LUT[i]← ∅

02. For x From 0 To n Do
02. For y From 0 To x Do
03. i ← x2 + y2

04. If i ≤ N Then
05. LUT[i] ← LUT[i] ∪{(x, y)}

0: (0, 0) 8: (2, 2) 17: (4, 1) 29: (5, 2) 40: (6, 2)
1: (1, 0) 9: (3, 0) 18: (3, 3) 32: (4, 4) 41: (5, 4)
2: (1, 1) 10: (3, 1) 20: (4, 2) 34: (5, 3) 45: (6, 3)
4: (2, 0) 13: (3, 2) 25: (4, 3), (5, 0) 36: (6, 0) 49: (7, 0)
5: (2, 1) 16: (4, 0) 26: (5, 1) 37: (6, 1) 50: (5, 5), (7, 1)

Fig. 9. Look-up table (2D case): numbers 0 to 50

Procedure Build3dLUT (Input N , Output LUT)
01. n ← '

√
N(; For i From 0 To N Do LUT[i]← ∅

02. For x From 0 To n Do
02. For y From 0 To x Do
03. For z From 0 To y Do
04. i ← x2 + y2 + z2

05. If i ≤ N Then
06. LUT[i] ← LUT[i] ∪{(x, y, z)}

0: (0, 0, 0) 9: (2, 2, 1), (3, 0, 0) 18: (3, 3, 0), (4, 1, 1) 27: (3, 3, 3), (5, 1, 1)
1: (1, 0, 0) 10: (3, 1, 0) 19: (3, 3, 1) 29: (4, 3, 2), (5, 2, 0)
2: (1, 1, 0) 11: (3, 1, 1) 20: (4, 2, 0) 30: (5, 2, 1)
3: (1, 1, 1) 12: (2, 2, 2) 21: (4, 2, 1) 32: (4, 4, 0)
4: (2, 0, 0) 13: (3, 2, 0) 22: (3, 3, 2) 33: (4, 4, 1), (5, 2, 2)
5: (2, 1, 0) 14: (3, 2, 1) 24: (4, 2, 2) 34: (4, 3, 3), (5, 3, 0)
6: (2, 1, 1) 16: (4, 0, 0) 25: (4, 3, 0), (5, 0, 0) 35: (5, 3, 1)
8: (2, 2, 0) 17: (3, 2, 2), (4, 1, 0) 26: (4, 3, 1), (5, 1, 0) 36: (4, 4, 2), (6, 0, 0)

Fig. 10. Look-up table (3D case): numbers 0 to 36

Pixel Queue Algorithm for Geodesic
Distance Transforms

Leena Ikonen

Lappeenranta University of Technology,
Department of Information Technology,

PO Box 20, 53851 Lappeenranta, Finland
leena.ikonen@lut.fi

Abstract. Geodesic distance transforms are usually computed with se-
quential mask operations, which may have to be iterated several times
to get a globally optimal distance map. This article presents an efficient
propagation algorithm based on a best-first pixel queue for computing
the Distance Transform on Curved Space (DTOCS), applicable also for
other geodesic distance transforms. It eliminates repetitions of local dis-
tance calculations, and performs in near-linear time.

1 Introduction

Distance transformations were among the first operations developed for digital
images. Sequential local transformation algorithms for binary images were pre-
sented already in the 1960s [8], and similar chamfering techniques have been
used successfully in 2D, 3D and even higher dimensions, see e.g. [2], [3], [1].
By modifying the definitions local distances, the chamfering can be applied to
gray-level distance transforms as well. The Distance Transform on Curved Space
(DTOCS) and its locally Euclidean modification Weighted DTOCS (WDTOCS),
which compute distances to nearest feature along a surface represented as a gray-
level height map, have been implented as mask operations [12].

Instead of propagating local distances in a predefined scanning order, the dis-
tance transformation can begin from the set of feature pixels, and propagate to
points further away in the calculation area. A recursive propagation algorithm
was presented in [7], where the distance value propagates from the previously
processed neighbor. If the new value is accepted into the distance map, i.e. it
is smaller than the previous distance value of the same pixel, the procedure is
repeated recursively for each neighbor. The efficiency of the recursive propa-
gation is highly dependent on the order in which the neighbors are processed.
An unwise or unlucky choice of propagation order causes numerous repetitions
of distance calculations, as shorter paths are found later on in the transforma-
tion. The ordered propagation algorithm, also presented in [7], eliminates some
of the repetitions. First the boundary of the feature set, and then neighbors
of already processed pixels, are placed in a queue, from which they are then
taken to be processed in order. Similar pixel queue algorithms are also presented
in [9] and [14].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 228–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Pixel Queue Algorithm for Geodesic Distance Transforms 229

The recursive and ordered propagation, and pixel queue algorithms, can be
seen as applications of graph search, where each pixel represents a vertex, and
edges exist between neighbor pixels. Local distances can be defined as weights
of connecting edges. The recursive propagation proceeds as a depth-first-search,
and first-in-first-out pixel queue algorithms are applications of breadth-first-
search. This article presents a best-first-search algorithm for computing gray-
level distance transforms based on a priority queue, which is implemented effi-
ciently as a minimum heap. A distance transform algorithm utilizing the priority
queue idea was presented in [13]. Bucket sorting is used to find the pixel with
the smallest current distance. The algorithm is applicable only for integer dis-
tances, as a separate storing bucket is needed for each distance value. Our heap
based priority queue works for any distance values, including the real valued
modifications of the DTOCS. Experiments demonstrate that convergence of the
sequential transformation as well as the ordered propagation algorithm is highly
dependent on the image size and complexity, whereas the near-linear pixel queue
algorithm slows down only slightly with increasing surface variance.

2 Distance Transforms

The Distance Transform on Curved Space (DTOCS) calculates distances along
a gray-level surface, when gray-levels are understood as height values. Local
distances are defined using gray-level differences. The basic DTOCS simply adds
the gray-level difference to the chessboard distance in the horizontal plane, i.e.
the distance between neighbor pixels is:

d(pi, pi−1) = |G(pi) − G(pi−1)| + 1 (1)

where G(p)denotes the gray-value of pixel p, and and pi are subsequentpixels
on a path. The locally Euclidean Weighted DTOCS (WDTOCS) is calculated
from the height difference and the horizontal distance using Pythagoras:

d(pi, pi−1) =
{√

|G(pi) − G(pi−1)|2 + 1 , pi−1 ∈ N4(pi)√
|G(pi) − G(pi−1)|2 + 2 , pi−1 ∈ N8(pi) \ N4(pi)

(2)

The diagonal neighbors of pixel p are denoted by N8(p) \ N4(p), where N8(p)
consists of all pixel neighbors in a square grid, and N4(p) of square neighbors.
More accurate global distances can be achieved by introducing weights, which
are proven to be optimal for binary distance transforms, to local distances in the
horizontal plane. The Optimal DTOCS is defined in [6] as

d(pi, pi−1) =

⎧⎨⎩
√

|G(pi) − G(pi−1)|2 + a2
opt , pi−1 ∈ N4(pi)√

|G(pi) − G(pi−1)|2 + b2opt , pi−1 ∈ N8(pi) \ N4(pi)
(3)

where aopt = (
√

2
√

2 − 2 + 1)/2 ≈ 0.95509 and bopt =
√

2 + (
√

2
√

2 − 2 −
1)/2 ≈ 1.36930 as derived in [2] by minimizing the maximum difference from the
Euclidean distance that can occur between points on the binary image plane.

pi−1

230 L. Ikonen

3 Pixel Queue Transformation Algorithm

Pixel queue algorithms are simple to implement for binary distance transforms.
With equal step lengths the distances propagate smoothly from the feature set
outwards, and the distance corresponds to the number of steps. As step lengths
vary in the DTOCS transformations, several short steps along a smooth area
of the image can create a shorter path than just one or a few steps along an
area with high variance. Distances can not propagate as pixel fronts moving
outwards from the feature set, or a path with a few long steps might be found
instead of a shorter path consisting of many short steps. Both recursive and
ordered propagation algorithms can compute the correct global distances also in
the DTOCS setting, if neighbors of updated pixels are processed whether or not
they have been processed before. However, this is very inefficient, as numerous
repetitions of local distance calculations are needed. The new efficient pixel
queue algorithm utilizes a priority queue implemented as a minimum heap:

1. Define binary image F(x) = 0 for each pixel x in feature set, and F(x) =
max for each x in calculation area.

2. Put feature pixels (or boundary) to priority queue Q.
3. While Q not empty

p = dequeue(Q), Fq(p) was the smallest distance in Q.
If Fq(p) > F(p) (obsolete value), continue from step 3.
F(p) becomes F∗(p) (value is final).
For neighbors x of p with F(x) > F∗(p)

Compute local distance d(p, x) from original image G
If F∗(p) + d(p, x) < F(x)

Set F(x) = F(p) + d(p, x)
enqueue(x)

end if
end for

end while

The initialization of the queue can be implemented in two different ways
without affecting the result. Only feature boundary pixels need to be enqueued
in the initial step, but enqueueing all feature pixels yields the same result. Pro-
cessing non-boundary feature pixels does not cause any changes in the distance
image, and hence no further enqueueings of neighbor pixels. The application de-
termines which approach is more efficient, e.g., if distances from the background
into a small object are calculated, the external boundary of the object should
be used rather than enqueueing the whole background.

The best-first approach eliminates repetition of local distance calculations.
Using the priority queue ensures that the propagation always proceeds from a
point, which already has its final distance value. As local distances, which by
definition are non-negative, are added to distance values taken from the queue,
the currently smallest distance can never decrease further. So once a pixel is
dequeued, it will not be enqueued again. However, as step lengths vary, a distance
value that has propagated from a point with a final optimal value, may still be

Pixel Queue Algorithm for Geodesic Distance Transforms 231

replaced with a smaller one. Small local distances can create new shorter paths.
This will cause the same pixel to be enqueued repeatedly, first with a larger
distance value and then with smaller ones, before the first instance has been
dequeued. Once the final distance value is dequeued, other instances of the pixel
in the queue become obsolete, and could be removed. However, it is easier to just
discard them when they are dequeued in the normal priority queue order. Not
processing neighbors x of point p, which already have a distance value smaller
or equal to F(p), eliminates a significant amount of local distance calculations,
including the reverse directions of previously calculated distances, i.e., if d(pi, pj)
is calculated during the transformation, d(pj , pi) will never be needed.

The local distances are treated similarly as in the pixel queue transforma-
tion in [9]. The current pixel is considered the source point, and new distance
values are assigned to all neighbors, for which the path via the source point is
the shortest found so far. The recursive and ordered propagation algorithms in
[7] as well as the sequential transforms view the current point as the destina-
tion with each neighbor as a possible source. Local distances from all neighbors
within mask must be calculated to obtain one new distance value. The “greedy”
approach of calculating distances forward from a source point was tested also
for the sequential algorithm, but the effect on convergence was insignificant.

4 Complexity Analysis

The forward and reverse pass of a sequential local transformation can be done in
linear time, as there is a constant number of operations per pixel. The problem
with the complexity analysis is that the number of passes needed varies a lot
depending on the size and the complexity of the image surface. Smooth and
simple images can usually be transformed in just a few iterations, but it is
possible to construct example images, which require one iteration for each pixel
on the path with the most pixels. Typical values for test images in our previous
works have been about 10-15 two-pass-iterations, which for an image of size
128×128 is in the ballpark of logn = 14, which would make the whole algorithm
about O(n log n). However, with larger images and more complex surfaces, the
number of iterations needed increases. The Experiments section will present
512 × 512 example images converging in about 70 iterations, which is clearly
more than logn = 18.

The priority queue transformation propagates local distances from each pixel
only when it is dequeued with its final distance value. This means that each
local distance in the image is computed only once, or some not at all, if neigh-
bor pixels can be discarded due to already smaller distance values. Sequential
algorithms recalculate each local distance at each iteration, which can be very
costly, especially in transformations requiring heavier floating point calculations,
like the WDTOCS. Updating the priority queue adds a factor to the computation
time, as each enqueueing and dequeueing takes O(lognq) time, where nq is the
number of pixels in the queue. The value nq varies through the transformation
representing the boundary of the area, where distances are already calculated.

232 L. Ikonen

An upper limit on the complexity can be estimated using the fact that at
each step after dequeueing one pixel, at most 7 pixels can be enqueued. The
path through the current point must come from somewhere, so at least one
neighbor must already have its final value. At each step one pixel value becomes
final, so the number of efficient steps is n − nf , where nf is the number of
feature pixels. Even with the extra enqueueings, and dequeueings of obsolete
pixels, the number of steps is in O(n), which makes the complexity of the whole
algorithm O(n log nq), or worst case complexity O(n log n). The theoretically
maximal queue length, about 6n, is a gross overestimate, as distances propagate
locally as pixel fronts, which means that in practise only about half the neighbors
of a pixel are enqueued with new distance values. Also after the n− nf efficient
steps leaving one final distance value, the queue should be empty, and certainly
not at its maximum length. Experimental results will provide a more realistic
estimate on the number of queue operations and the average length of the queue.

5 Experiments

The priority queue algorithm was tested on gray-level images with varying sur-
face complexity to compare with the sequential local transformation, and also
with the ordered propagation algorithm implemented with a first-in-first-out
pixel queue, like in [9]. The distance images were compared to make sure they
were identical - and at first they were not. The sequential implementation cal-
culated distances only at points, where the whole mask fit on the image, so
errors appeared in areas, where the shortest path from the feature passed via
edge pixels. Instead of modifying the mask at the edges, the border effects were
corrected by adding an extra row or column to each edge before the mask trans-
formation, copying the edge values to the corresponding extra row or column.
With this correction the distance images were identical for the DTOCS, and
within calculation accuracy tolerance for the WDTOCS. The pixel queue algo-
rithms propagate distances to existing neighbors, so distances near edges are
calculated correctly without tricks.

The performance of the algorithms was compared using the images seen in
Fig. 1. The Mercury height map, Fig. 1 a), and the Lena image, Fig. 1 b),
represent highly varying surfaces. The Lena image is obviously not an actual
height map, but is used similarly in these tests. The Ball image, Fig. 1 c), is
constructed as a digitization of the sphere function, i.e. the highest gray-value in
the center corresponds to the radius of the sphere. The fourth test image, Flat,
consists of a constant gray-value representing the smoothest surface possible.
Testpoint grids were created (see example on the Ball image, Fig. 1 c), and
distances from one testpoint to everywhere else in the image were calculated. The
grids contained 244 points, and averages calculated from these 244 independent
runs are visualized in figures 2 - 6. The sequential algorithm was faster only for
the integer DTOCS on the Flat images. The larger and more complex the surfaces
were, the more clearly the pixel queue algorithm outperformed the sequential
transformation, and also the ordered propagation. The ordered propagation was

Pixel Queue Algorithm for Geodesic Distance Transforms 233

(a) Mercury (b) Lena (c) Ball

Fig. 1. Test images used. An example of a test point grid is shown on the Ball image

PQ Seq OP PQ Seq OP PQ Seq OP PQ Seq OP
0

0.5

1

1.5

2

 0.04 0.05 0.06 0.08
 0.07 0.08 0.09 0.10

 0.03

 0.14

 0.32 0.52

 0.09

 0.61

 1.38 1.86

 0.03
 0.10

 0.71
 0.89

 0.05
 0.16

 1.25
 1.50

se
co

nd
s

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

PQ Seq OP PQ Seq OP PQ Seq OP PQ Seq OP
0

5

10

15

20

 0.18 0.19 0.26 0.30
 0.29 0.31 0.40 0.43

 0.10

 0.98

 3.46
 3.94

 0.36

 4.23

13.49
14.49

 0.12
 0.74

 5.38

 8.96

 0.22
 1.10

 9.21

15.37

se
co

nd
s

Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

[p]

Fig. 2. Average run times of DTOCS (black bar) and WDTOCS (white bar) using
Priority Queue, Sequential and Ordered Propagation algorithms

slightly faster than the sequential algorithm in most cases, as despite numerous
repeated pixel enqueuings, processing all pixels several times in the sequential
transformations is more costly. For very smooth surfaces where distances proceed
evenly as pixel fronts, the ordered propagation is faster than the priority queue,
as first-in-first-out queue operations take constant time.

The run times (Fig. 2), and the number of local distance calculations (Fig. 3)
are proportional to the number of iterations in the sequential algorithms, and
the number of iterations needed grows with the size and the complexity of the
image (Fig. 4). The pixel queue transformation eliminates a lot of computation
by calculating only those local distances, which are needed. If each local dis-
tance was calculated exactly once, the 256 ∗ 256 images would require 260610

234 L. Ikonen

PrQ Seq OP PrQ Seq OP PrQ Seq OP PrQ Seq OP
0

5

10

15

20

25

 0.19 0.20 0.23 0.26
 0.26 0.26 0.26 0.26

 1.05

 5.97

 12.7

 19.3

 1.05

 7.17

 15.6

 20.7

 0.19 0.74

 4.94
 6.24

 0.26 0.82

 5.61
 6.81

m
ill

io
n

lo
c.

 d
is

t.
ca

lc
ul

at
io

ns

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

PrQ Seq OP PrQ Seq OP PrQ Seq OP PrQ Seq OP
0

50

100

150

200

 0.78 0.81 0.96 1.02
 1.04 1.03 1.04 1.04

 4.20

42.17

133.1
150.2

 4.20

49.96

150.6
160.4

 0.78 5.27

36.77

62.34

 1.04 5.59

41.18

69.00

m
ill

io
n

lo
c.

 d
is

t.
ca

lc
ul

at
io

ns

Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

[p]

Fig. 3. Average number of local distance calculations needed in DTOCS (black bar)
and WDTOCS (white bar) using Priority Queue, Sequential and Ordered Propagation
algorithms

PrQ Seq PrQ Seq PrQ Seq PrQ Seq
0

10

20

30

40

 3.46 3.86 4.63 5.32 1.53 1.70 2.03 2.21

 2.00

11.34

24.08

36.72

 2.00

13.62

29.66

39.35

ite
ra

tio
ns

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

PrQ Seq PrQ Seq PrQ Seq PrQ Seq
0

20

40

60

80

 3.54 3.90 4.81 5.39
 1.60 1.76 2.13 2.27

 2.00

20.07

63.32
71.50

 2.00

23.77

71.69
76.34

ite
ra

tio
ns

Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

Fig. 4. Average number of iterations needed in sequential DTOCS (black bar) and
WDTOCS (white bar). The number of iterations indicated for the pixel queue algorithm
is a comparison number calculated from the run times

local distances, and the 512∗512 images 1045506 (rows∗ (columns−1) horizon-
tal, columns ∗ (rows − 1) vertical, and 2 ∗ (rows − 1) ∗ (columns − 1) diagonal
distances). Each iteration of the sequential transformation calculates each of

Pixel Queue Algorithm for Geodesic Distance Transforms 235

these local distances twice, once in both directions. Some local distance cal-
culations could have been eliminated from the first iteration by scanning the
image to the feature pixel without calculating distances, saving about half an
iteration.

The only source for repetition in the priority pixel queue algorithm is the
calculation accuracy of floating point distance transforms. A distance value may
be considered new, and consequently the pixel enqueued, even if it is smaller
than the previous value only because of computation accuracy. Despite adding
a threshold to the comparisons (the new value must be 0.001 smaller to be ac-
cepted as new), a few pixels ended up being enqueued repeatedly in the complex
surfaces, e.g., the number of enqueueings minus the number of obsolete pixels
found from the queue was at most 262190 for the 512 ∗ 512 Mercury surface of
262144 pixels. In the WDTOCS transformations of the smooth images, and of
course in all the DTOCS transformations, the number of enqueueings minus the
number of obsolete pixels equals the number of pixels.

The running times of C-implementations of the algorithms on a Linux com-
puter with an AMD Athlon 1.678 GHz processor indicate that particularly for
the floating point WDTOCS distances the pixel queue algorithm is superior-
ior. The speed of the priority queue operations, enqueue and dequeue, is not
affected by the choice of floating point versus integer distances, so the rela-
tive cost of repeating the local distance calculations in numerous iterations is
higher when using floating point values. In addition, the WDTOCS typically
requires a few more iterations, causing even more repetitions. For example for
the Mercury height map of size 512 ∗ 512 the speedup of the pixel queue trans-
form compared to the sequential transform is 3.94/0.30 ≈ 13 for the integer
DTOCS and 14.49/0.43 ≈ 34 for the floating point WDTOCS. The Optimal
DTOCS was not tested here, as one integer and one floating point distance
transform were enough to demonstrate the efficiency of the pixel queue algo-
rithm. The advantage would be even more clear in the case of the Optimal
DTOCS, which requires an additional multiplication operation to calculate each
local distance.

The number of iterations marked for the pixel queue algorithm in Fig. 4
is calculated as the number of sequential iterations that could have been per-
formed in the time consumed by the pixel queue algorithm. As the running time
for one iteration should be constant for a certain image size and local distance
definition, the comparison number can be used to estimate how much the per-
formance of the pixel queue algorithm depends on the complexity of the image
surface. The value ranged in the DTOCS tests of 512 ∗ 512 images from 3.54
(Flat image) to 5.39 (complex Mercury surface), while the number of iterations
of the sequential DTOCS ranged from 2 to 71.50. This means that the running
time of the pixel queue algorithm is much better predictable. One larger image,
the Mercury 768 ∗ 768 surface, was tested to provide experimental basis to the
claim of near-linear complexity. The average runtimes were 0.66 and 1.01 sec-
onds for the priority queue DTOCS and WDTOCS, and 9.52 and 41.72 seconds
for the sequential DTOCS and WDTOCS. Compared to the 256 ∗ 256 images,

236 L. Ikonen

the corresponding 512 ∗ 512 images took about 4 times longer to transform with
the priority pixel queue algorithm, and the fact that the 768 ∗ 768 Mercury im-
age took about 9 times longer than the 256 ∗ 256 image suggests a continuing
linear trend.

Flat Ball Lena Merc
0

0.02

0.04

0.06

0.08

0.1

0.12
Priority pixel queue, 256x256 images

m
ill

io
n

pi
xe

ls

Flat Ball Lena Merc
0

0.5

1

1.5

2

2.5

3
Ordered propagation, 256x256 images

m
ill

io
n

pi
xe

ls

Flat Ball Lena Merc
0

0.1

0.2

0.3

0.4

0.5
Priority pixel queue, 512x512 images

m
ill

io
n

pi
xe

ls

Flat Ball Lena Merc
0

5

10

15

20

25

30
Ordered propagation, 512x512 images

m
ill

io
n

pi
xe

ls

Fig. 5. Number of pixel enqueuings in DTOCS (black bar) and WDTOCS (white bar)
for the priority queue (left) and the ordered propagation (right). The horizontal line
on each bar indicates the number of pixels in the image, so the section of the bar above
the line shows how many pixels get enqueued repeatedly. Notice the different scales

More statistics on the pixel queue transformation are shown in Fig. 5 and
Fig. 6. The number of enqueued pixels, i.e. the number of enqueue and dequeue
operations, is somewhat larger than the number of pixels. The more complex
the surface, the more pixels get enqueued repeatedly when new shorter paths
are found. The number of pixel enqueuings in the ordered propagation algorithm
is in a larger magnitude, and also grows very rapidly with the size and complex-
ity of the image (see Fig. 5). The average and maximum queue lengths (Fig. 6)
are calculated from the average and maximum queue lengths recorded at each
run. The largest average and the largest maximum queue length for each test
image is indicated as lines on top of the bars. The average queue lengths for the
768 ∗ 768 Mercury surface not included in the graphs were 5295 for the DTOCS
and 6073 for the WDTOCS, and the longest queue encountered contained 14069
pixels � n = 768 ∗ 768 = 589824. In general, the queue lengths seem to grow

Pixel Queue Algorithm for Geodesic Distance Transforms 237

AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ
0

1000

2000

3000

4000

Flat 256 x 256 Ball 256 x 256 Lena 256 x 256 Merc 256 x 256

pi
xe

ls

AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ AvgQ MaxQ
0

2000

4000

6000

8000

10000
Flat 512 x 512 Ball 512 x 512 Lena 512 x 512 Merc 512 x 512

pi
xe

ls

Fig. 6. Average and maximum queue lengths in DTOCS (black bar) and WDTOCS
(white bar). The horizontal lines above the bars indicate the maximum values, i.e. the
largest average queue length and largest maximum queue length

sublinearly with the size of the image. As queue lengths are in a clearly smaller
magnitude than the number of pixels, the algorithm is in practise linear.

6 Discussion

The DTOCS algorithms have been presented as geodesic distance transforms
without proper explanation on how and why they may be called geodesic. The
DTOCS distances resemble geographical geodesic distances. Discrete paths fol-
low the gray-level surface like the shortest path between two cities follow the
surface of the geoid. In image analysis the term geodesic distance refers to a
situation where paths linking image pixels are constrained to remain within a
subset of the image plane [11]. In the DTOCS setting paths can cross any areas
of the image, but path lengths can become huge. The DTOCS can be used in
the same manner as constrained distance transforms, marking constraint pix-
els with values differing so much from the rest of the image plane that the
shortest paths will never cross those pixels. In such a situation the distances
propagate similarly as in a geodesic, i.e. constrained, distance transform. The
pixel queue algorithm could be used to calculate both types of transforms, as
well as gray-level distance transforms calculating minimal cost paths, e.g. the
geodesic time transform with distances defined as the sum of gray-values along
the path [10].

The presented pixel queue algorithm was demonstrated to be efficient, out-
performing the sequential algorithm in almost all test cases. The running times

238 L. Ikonen

do grow a bit with increased surface complexity, but not nearly is much as the
running times of the sequential transformation. The complexity of the algorithm
is O(n log nq), but as nq � n it performs in near-linear time. The number of
local distance calculations is minimized, i.e. each local distance in the image is
computed at most once, which is a clear benefit compared to the iterated sequen-
tial transforms, particuarly if the local distances require heavier floating point
computations.

Previous DTOCS experiments have been made on quite small images. The
experiments here demonstrate the expected effect of increasing the image size,
i.e. the number of iterations needed for convergence becomes quite unpredictable.
The sequential transformation may still be useful, but in applications with high
resolution images, the pixel queue algorithm is more efficient. Another benefit
of the pixel queue approach is that distances are calculated exactly where they
are needed. If, for example, an image of an object on a background is trans-
formed, the sequential transformation calculates unnecessary distances on the
background. The pixel queue algorithm naturally proceeds from the border into
the object. Also, as distance values are known to be final once they are dequeued,
a real time application could utilize some values before the whole transforma-
tion is done. If the feature set is disconnected, the distance values propagated
from each feature will be mixed in the priority queue, but distance values near
each feature will be calculated early in the transformation. When the propa-
gating fronts meet, the transformation is final. This idea could be utilized for
developing a tesselation method.

Another approach, which ensures that obtained distance values are immedi-
ately final is presented in [4]. The parallel implementation is based on the fact
that in binary distance transforms each pixel with distance value N must have a
neigbor with distance value N −a or N −b, where a and b are the local distances
to square and diagonal neighbors. Pixels with a 0-valued neighbor are updated
first, and then pixels with a neighbor of each possible successively increasing dis-
tance value. Thus, the distance values propagate similarly as in the pixel queue
transformation presented here.

Pixel queue algorithms can be implemented also in higher dimensions. For
binary voxel images in 3D, as well as for binary images in 2D, where distances
propagate as smooth fronts, ordered propagation with a first-in-first-out queue
would probably work as well or even better than the priority queue approach.
However, if the voxels have values other than 0 and 1, and path lengths are
defined using voxel values on the path resulting in varying local distances, the
priority queue algorithm could be useful. Larger neighborhoods, for example 5∗5
in 2D or 5 ∗ 5 ∗ 5 in 3D, could be introduced to the pixel queue algorithm, but
in the DTOCS setting larger neighborhoods need to be used with care, as they
can result in illegal paths across very narrow obstacles.

The pixel queue algorithm could easily be modified to record the path of the
shortest distance, by storing the direction from which the path propagated to
each pixel. However, only the first found path would be recorded even though
there are usually several equally short paths. The Route DTOCS algorithm for

Pixel Queue Algorithm for Geodesic Distance Transforms 239

finding the route between two points [6] or point sets [5] requires two distance
maps, one for each end-point set. The route consists of points on any optimal
path, and a distinct path can be extracted using backtracking. In shortest route
applications large complex images with long paths are typical, so the priority
pixel queue algorithm improves the method significantly.

References

1. G. Borgefors. Distance Transformations in Arbitrary Dimensions. Computer Vi-
sion, Graphics, and Image Processing, 27:321–345, 1984.

2. G. Borgefors. Distance Transformations in Digital Images. Computer Vision,
Graphics, and Image Processing, 34:344–371, 1986.

3. G. Borgefors. On digital distance transforms in three dimensions. Computer Vision
and Image Understanding, 64(3):368–376, 1996.

4. G. Borgefors, T. Hartmann, and S. L. Tamimoto. Parallell distance transforms
on pyramid machines: theory and implementation. Signal Processing, 21(1):61–86,
1990.

5. L. Ikonen and P. Toivanen. Shortest routes between sets on gray-level surfaces.
In Patter recognition and Image Analysis (PRIA), pages 244–247, St. Petersburg,
Russia, October 2004.

6. L. Ikonen and P. Toivanen. Shortest routes on varying height surfaces using gray-
level distance transforms. Image and Vision Computing, 23(2):133–141, February
2005.

7. J. Piper and E. Granum. Computing Distance Transformations in Convex and
Non-convex Domains. Pattern Recognition, 20(6):599–615, 1987.

8. A. Rosenfeld and J. L. Pfaltz. Sequential Operations in Digital Picture Processing.
Journal of the Association for Computing Machinery, 13(4):471–494, October 1966.

9. J. Silvela and J. Portillo. Breadth-first search and its application to image process-
ing problems. IEEE Transactions on Image Processing, 10(8):1194–1199, 2001.

10. P. Soille. Generalized geodesy via geodesic time. Pattern Recognition Letters,
15(12):1235–1240, 1994.

11. P. Soille. Morphological Image Processing: Principles and Applications. Springer-
Verlag, 2 edition, 2003 and 2004.

12. P. Toivanen. New geodesic distance transforms for gray-scale images. Pattern
Recognition Letters, 17:437–450, 1996.

13. Ben J. H. Verwer, Piet W Verbeek, and Simon T. Dekker. An efficient uniform
cost algorithm applied to distance transforms. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 11(4):425–429, April 1989.

14. L. Vincent. New trends in morphological algorithms. In Proc. SPIE/SPSE, volume
1451, pages 158–170, 1991.

Analysis and Comparative Evaluation of
Discrete Tangent Estimators

Jacques-Olivier Lachaud, Anne Vialard, and François de Vieilleville

LaBRI, Univ. Bordeaux 1, 351 cours de la Libération,
33405 Talence Cedex, France

{lachaud, vialard, devieill}@labri.fr

Abstract. This paper presents a comparative evaluation of tangent es-
timators based on digital line recognition on digital curves. The com-
parison is carried out with a comprehensive set of criteria: accuracy on
smooth or polygonal shapes, behaviour on convex/concave parts, com-
putation time, isotropy, asymptotic convergence. We further propose a
new estimator mixing the qualities of existing ones and outperforming
them on most mentioned points.

1 Introduction

In this paper, we address the problem of tangent estimation along contours of
digitized 2D objects. Tangent estimation has many applications in discrete ge-
ometry. For instance, the length of a digital contour is accurately estimated from
tangents by integration [3, 9]. Derivating the orientation of the tangent provides
an estimation of the curvature [9, 11, 12]. The previous geometric parameters
are used in classical pattern recognition applications. They also define the in-
ternal energies of discrete deformable models [7]. When rendering 3D digitized
objects, the normal vector field can be estimated from tangent directions along
slice contours [8, 9].

When trying to estimate geometric properties of digitized objects, we face the
issue that infinitely many shapes have the same digitization: there is no good
approximation since there is no reference shape. Other hypotheses are thus re-
quired. The common assumption is that the original continuous object has some
“natural” properties such as: compactness (not a fractal), bounded curvature,
sometimes piecewise linear geometry (i.e. polygon). Therefore we restrict the
class of shapes we are interested in. Discrete boundaries will come from the dig-
itization of continuous shapes composed of polygonal parts and of smooth parts
with bounded curvature.

Many tangent estimators are based on a fixed-size window of curve points
around the point of interest [1, 9, 10, 12]. However these methods cannot converge
asymptotically to the value on the continuous shape because the computation
scale is not adapted to the local shape geometry. This is why we take into account
in this comparative analysis only estimators based on digital straight segment
extraction which use an adaptative window size [6, 8, 11].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 240–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analysis and Comparative Evaluation of Discrete Tangent Estimators 241

In Section 2, we recall the existing definitions of discrete tangents and com-
pare qualitatively their advantages and drawbacks. We then propose in Section 3
a new tangent estimator, called λ-MST, that takes the best out of the existing
ones. This estimator is based on the set of maximal digital straight segments
going through the point of interest. We prove it has two interesting properties:
it identifies convex and concave parts of the shape and behaves accordingly, its
computational complexity is equivalent to the other existing estimators both lo-
cally and globally for the whole curve. Section 4 is devoted to an experimental
comparative evaluation of the tangent estimators. We have checked the following
points: tangent estimation on smooth and straight parts of the shape, sharp cor-
ner recognition, isotropy, mean and maximal asymptotical error with different
shapes. The λ-MST appears to have the best behaviour in most practical cases.

2 Estimating Tangent with Digital Straight Segments

We restrict our study to the geometry of 4-connected digital curves. Indeed,
a digital object is a set of pixels and its boundary when seen as a collection
of pointels and linels is a 4-connected curve. Besides this work may easily be
adapted to 8-connected curves since it relies on DSS recognition. We introduce
some notations to get homogeneous definitions of existing tangent estimators
based on digital straight lines. In the remaining of the paper, the digital curve
is denoted by C. Its points (Ck) are assumed to be indexed from 0 to N − 1.
A set of successive points of C ordered increasingly from index i to j will be
conveniently denoted by Ci,j .

2.1 Standard Line, Digital Straight Segment, Maximal Segments

Definition 1. The set of points (x, y) of the digital plane verifying μ ≤ ax−by <
μ + |a| + |b|, with a, b and μ integer numbers, is called the standard line with
slope a/b and shift μ.

The standard lines are the 4-connected discrete lines. As we will see later, all
discrete tangents are defined as particular connected subset of standard lines
included in 4-connected digital curves.

Since the tangent is a local property of the curve, we can always assume that
we look at a restricted part of C, where the indices are totally ordered (the
curve can be re-indexed differently so that its indices are totally ordered on the
subpart of interest). The following definition is thus valid.

Definition 2. We say that a set of successive points Ci,j of the digital curve C
is a digital straight segment (DSS) iff there exists a standard line (a, b, μ) con-
taining them. The predicate Ci,j is a DSS is denoted by S(i, j). When S(i, j),
we denote by D(i, j) the characteristics associated with the digital straight seg-
ment [4]: the characteristics (a, b, μ) of the standard line containing all the
points Ci,j, the end points Ci and Cj, the principal upper and lower leaning
points Um, UM , Lm, LM .

242 J.-O. Lachaud, A. Vialard, and F. de Vieilleville

The first index j, i ≤ j, such that S(i, j) and ¬S(i, j + 1) is called the front
of i. The map associating any i to its front is denoted by F . Symmetrically, the
first index i such that S(i, j) and ¬S(i − 1, j) is called the back of j and the
corresponding mapping is denoted by B.

The definition of maximal segments will be central for estimating tangents.
They form the longest possible DSS in the curve. They are used for polygonizing
the curve into the minimum number of segments [6].

Definition 3. Any set of points Ci,j is called a maximal segment iff any of
the following equivalent characterizations holds: (1) S(i, j) and ¬S(i, j + 1) and
¬S(i − 1, j), (2) B(j) = i and F (i) = j, (3) ∃k, i = B(k) and j = F (B(k)), (4)
∃k′, i = B(F (k′)) and j = F (k′).

2.2 Discrete Tangents

Based on local DSS recognition, several tangent estimators at a digital curve
point have been proposed. Their quality is to adapt the computation window to
the local shape of the curve. Exact tangent estimation for digitizations of straight
lines can thus be achieved. They all try to make the right balance between longest
and most centered DSS around the point of interest.

Definition 4. The following DSS may be defined around any point Ck of the
digital curve C. They correspond to the notion of discrete tangent (see Fig. 1).

– The DSS Ck−l,k+l with S(k − l, k + l) and ¬S(k − l − 1, k + l + 1) is called
the symmetric tangent (ST) at Ck [8].

– The maximal segment with biggest indices that includes the symmetric tan-
gent at Ck is called the Feschet-Tougne tangent (FTT) at Ck [6].

– The extended tangent (ET) at Ck includes the symmetric tangent Ck−l,k+l

but may be extended in the two following cases: (i) if S(k−l, k+l+1)∧¬S(k−
l − 1, k + l) then it is extended forward as the maximal segment Ck−l,F (k−l),
(ii) if S(k − l − 1, k + l) ∧ ¬S(k − l, k + l + 1) then it is extended backward
as the maximal segment CB(k+l),k+l.

– The forward half-tangent at Ck is the DSS Ck,F (k) and the backward half-
tangent at Ck is the DSS CB(k),k. The median half-tangent (HT) at Ck is
the arithmetical line median to the two half-tangents.

Any DSS defines an angle between its carrying standard line and the x-axis (in
[0; 2π[since a DSS is oriented). This angle will be called later on the direction
of the DSS and denoted by the symbol θ.

The preceding discrete tangent definitions, except for the FTT, are inde-
pendent of the orientation chosen for the curve (Fig. 1d-e). ET can be seen as
an unambiguous version of FTT. Both FTT and ET are local longest DSS, to
the expense of a loss of localization around the point. FTT and ET tend to
polygonalize the digital curve even for underlying smooth shapes.

On the other hand, ST and HT have a very good localization around the
point (perfectly centered for ST). However they both may have a bad behav-
ior on even very regular shapes (e.g. at the points where a circle with integer

Analysis and Comparative Evaluation of Discrete Tangent Estimators 243

(f)

(g)

(a)

(b)

(c)

ST

HTf

(e)

(d)

HTb
ET=FTT

ST

ST = ET

FTT

ET = FTT

Fig. 1. Illustration of discrete tangents. (a) ST. (b) ET = FTT (here). (c) forward and
backward HT. Subfigures d-g show specific problem raised by FTT and ST and solved
by ET: (de) balanced tangent for ET and ST versus arbitrarily unbalanced tangent for
FTT, (fg) false concavity detected by ST versus correct straight line for ET and FTT

radii touches the axes). They may also not locate accurately convex or concave
parts of the curve (Fig. 1f-g). Note HT is also used for computing the curva-
ture [2].

It is thus not clear which definition of discrete tangent is the best suited
to a given application. A comparative evaluation of all tangent definitions is
thus necessary to anticipate their behavior for given shapes and applications.
This evaluation is made in Section 4. Before that, we construct a new tan-
gent estimator which aims at mixing the qualities of the other ones: related to
maximal segments as FTT and ET; computation window identical to HT; sig-
nificant position of the point wrt the DSS surrounding it as ST; unambiguous
definition.

3 Tangent Estimation Based on Maximal Segments

We define a new tangent estimator that depends on the set of maximal seg-
ments that goes through a point of the digital curve. This set is called the pencil
of maximal segments around the point of interest. As noted by Feschet and
Tougne [6], several successive points may have the same pencil. Therefore the
tangent estimator takes also into account the position of the point within the
pencil. More specifically, the point has a given eccentricity wrt each maximal
segments. The tangent direction is estimated by a combination of the direction
of each maximal segment weighted by the eccentricity. In the following subsec-
tions, we formalize the new tangent estimator, we then show it preserves con-
vexity/concavity with minor restrictions and we explicit lastly how to compute
it in optimal time.

244 J.-O. Lachaud, A. Vialard, and F. de Vieilleville

3.1 Eccentricity, Maximal Segment Tangent Estimator

We index all the maximal segments of the curve by increasing indices: M i =
Cmi,ni

with F (mi) = ni and B(ni) = mi. From characterizations (3) and (4) of
the definition of maximal segment (Definition 3), any DSS Ci,j and hence any
point belongs to at least two maximal segments CB(j),F (B(j)) and CB(F (i)),F (i).
Therefore, the pencil of maximal segments P(k) = {M i, k ∈ M i} around any
point Ck is never empty. We denote by θi the direction of the DSS M i. In the
remaining of the paper, λ is a mapping from [0, 1] to R+ with λ(0) = λ(1) = 0
and λ > 0 elsewhere.

The eccentricity of Ck wrt a maximal segment M i is defined as

ei(k) =

{
‖Ck−Cmi

‖1

Li
= k−mi

Li
if i ∈ P(k)

0 otherwise
, with Li = ‖Cni

− Cmi
‖1. (1)

Definition 5. The λ-maximal segment tangent direction at point Ck (λ-MST)
is defined as

θ̂(k) =

∑
i∈P(k) λ(ei(k))θi∑
i∈P(k) λ(ei(k))

=
∑

i λ(ei(k))θi∑
i λ(ei(k))

. (2)

Considering the properties of the eccentricity and the non-emptyness of pencils,
this value is always defined and may be computed locally.

The preceding notion is extended to any real value k in [0, N [. It is enough to
consider k as the curvilinear parameterization of the 4-connected contour. Any
non-integer value of k corresponds to a real point on the straight line linking
C
k� and C�k. When λ is continuous, the angle θ̂(k) is continuous too and a
length estimator may be derived from it, giving l̂(k) = h

|cos(θ̂(k))|+|sin(θ̂(k))| . The

length of the curve can be estimated by simple integration of l̂(k). Coeurjolly
and Klette have reported that this method of length evaluation gives very good
results [3].

3.2 Local Convexity or Concavity; Characterization of λ

Feschet proposes to use maximal segments for decomposing the curve into convex
and concave parts [5]. The following definition shares the same idea.

Definition 6. The digital curve C is oriented counterclockwise wrt the discrete
object it bounds. C is locally convex (resp. concave) at point Ck iff the angles (θi)
of the sorted segments of P(k) is an nondecreasing sequence (resp. nonincreasing
sequence). (Angles are brought back in] − π, π[relatively to the first one.)

We say that a tangent estimator to a digital curve satisfies the convex-
ity/concavity property iff the estimated tangent direction is nondecreasing (resp.
nonincreasing) on every connected subset where the curve is locally convex (resp.
concave). This property holds for ET and FTT but does not hold for ST and HT
(e.g. see Fig. 1). For λ-MST, it depends on the function λ as indicated below.

Analysis and Comparative Evaluation of Discrete Tangent Estimators 245

Theorem 1. If λ is differentiable on]0, 1[, then the λ-MST estimator satisfies
the convexity/concavity property iff d

dt (t
λ′
λ (t)) ≤ 0 and d

dt ((1 − t)λ′
λ (t)) ≤ 0 hold

on this interval.

The proof is given in appendix. It is easy to check that functions with a
bell shape satisfy this constraint (e.g. functions based on binomials). This is for
instance the case for the C2 function 64(−x6 + 3x5 − 3x4 + x3) or for the C∞

function exp(4 − 1
x − 1

1−x) extended by zeroes. One may also find functions not
differentiable everywhere which satisfies the convexity/concavity. Among them,
we can quote the triangle function with a peak at 1

2 .

3.3 Complexity Issues

Another interesting criterion for choosing a tangent estimation is its computa-
tional cost. Feschet and Tougne [6] showed an algorithm that computes the FTT
to all points of a curve in a time linear with the number of points. We show here
that all maximal segments of a curve can be computed with the same complexity.
The λ-MST to all points of a curve is thus quickly computed.

Given a maximal segment Mk = Cmk,nk
, its next maximal segment can be

defined as CB(nk+1),F (B(nk+1)). It is the maximal segment containing the point
nk +1 and obtained from Mk with a minimal number of operations (adding and
removing a point). The following algorithm computes it:

Compute next maximal segment (Mk = Cmk,nk
)

first ← mk + 1 last ← nk + 1
while ¬S(first, last) first ← first + 1
while S(first, last) last ← last + 1
return Mk+1 = Cfirst,last−1

Its principle is to remove points at the backward extremity of Mk until it
becomes possible to extend the resulting segment at the other end. Of course,
the characteristics of the intermediate DSS must be updated at each removal or
addition of a point. The time complexity of the preceding function depends on
the complexity of the updates, which are proved to be O(1) by:

Theorem 2. Assume S(i, j), and assume the characteristics D(i, j) of the cor-
responding DSS are known. Then,

1. (Addition of point Ci or Cj) deciding S(i, j + 1) or S(i − 1, j) are O(1)
operations and, when appropriate, computing D(i, j + 1) or D(i − 1, j) are
O(1) operations too (proved by Debled-Renesson and Réveillès [4]);

2. (Removal of point Ci or Cj) computing D(i + 1, j) or D(i, j − 1) are O(1)
operations (see below).

An immediate corollary is that all the maximal segments of a given closed
digital curve are computed with a linear complexity (each point of the curve is
added once to a segment and removed once). Remark that the complexity of

246 J.-O. Lachaud, A. Vialard, and F. de Vieilleville

(b)(a) (c)

Ci

CjUM
Cj

Lm = LM

Ci = Um

L′
m

U ′
M

U ′
m

L′
M

Cj

Ci+1

Fig. 2. Removal of a point from a DSS. (a) DSS Ci,j . The point Ci is an upper leaning
point and its removal will increase the segment slope. (b) Rotation of the leaning lines
around the pivot points (in gray) during the addition/removal of Ci. (c) DSS Ci+1,j .
Its slope and the leaning points U ′

m and L′
M have to be recomputed

computing the pencil P(k) around Ck depends on the local shape of the curve
(O(F (k)−B(k))). We now explain briefly how to update a DSS in constant time
when removing a point.

Let Ci,j be a DSS of characteristics D(i, j) = (a, b, μ, Um, UM , Lm, LM). Let
us recall that Um, UM , Lm and LM are leaning points that belong to the DSS,
e.g. their remainder equal μ or μ+|a|+|b|−1. Um and UM (resp. Lm and LM) are
upper (resp. lower) leaning points, leftmost and rightmost. Without any loss in
generality this digital segment belongs to the first quadrant. In the following, we
denote by (a′, b′, μ′, U ′

m, U ′
M , L′

m, L′
M) the characteristics D(i + 1, j) of the DSS

Ci+1,j , which we wish to compute. Our algorithm is based on the observation
that if the addition of the point Ci to Ci+1,j has changed the characteristics
D(i + 1, j), its removal from Ci,j should do an inverse modification to D(i, j).
After the examination of the incremental algorithm in [4] which explains how to
update the characteristics when a point is added, this situation happens when
Ci is an upper or lower leaning point of the DSS Ci,j . Fig. 2 illustrates the case
where Ci is an upper leaning point.

We detail here the update when Ci = Um and −−−→
CiUM = (b, a) and Lm =

LM . Clearly, the addition of Ci to Ci+1,j has decreased the slope of the DSS.
Geometrically, it corresponds to a rotation of the upper leaning line around U ′

M

and of the lower leaning line around L′
m. The two leaning points UM and Lm

are thus left unchanged by the removal of Ci. We can also easily state that the
point P = (xCi

+ 1, yCi
− 1) would have extended Ci+1,j without modifying

its characteristics D(i + 1, j). The values (a′, b′, μ′) are deduced from P . The

Table 1. Updates of D(i, j) when removing point Ci

Ci = Um ∧ −−−→
CiUM = (b, a) ∧ Lm = LM Ci = Lm ∧ −−−→

CiLM = (b, a) ∧ Um = UM

a′ yLm − (yCi − 1) yUm − (yCi + 1)
b′ xLm − (xCi + 1) xUm − (xCi − 1)
μ′ a′xUM − b′yUM a′xUm − b′yUm

U ′
m UM − (xUM − xCi − 1)/b′(b′, a′) Um

U ′
M UM Um + ((yCj − yCi − 1)/a′ − 1)(b′, a′)

L′
m Lm LM − (yLM − yCi − 1)/a′(b′, a′)

L′
M Lm + ((xCj − xCi − 1)/b′ − 1)(b′, a′) LM

Analysis and Comparative Evaluation of Discrete Tangent Estimators 247

updating of Um and LM is a little more tricky and exploits the property that
the vector linking two successive upper (or lower) leaning points is (b′, a′). The
computation of the characteristics D(i + 1, j) are sumed up in the first column
of Table 1. Its second column corresponds to the case where Ci is a lower leaning
point and its removal decreases the slope.

4 Experimental Evaluation

In this section, we perform a quantitative evaluation of tangent estimators based
on DSS recognition. The behaviour of the λ-MST estimator rely on the λ function
which monitor the estimation of the underlying curve. For example recontruct-
ing C∞ functions requires C∞ λ functions. We choose to minimize the curvature
of the underlying curve by taking the symmetric triangle function with a peak
at 1

2 as λ function. This function estimates the continuous underlying curve as
a circular arc when the pencil of maximal segments is reduced to two maxi-
mal segments. Moreover it gives very good practical results. In the computer
implementation, all tangent directions are estimated wrt linels, not points (i.e.

(a) HT estimator (b) ST estimator

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1.5 2 2.5 3
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1.5 2 2.5 3

(c) ET estimator (d) λ-MST estimator

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1.5 2 2.5 3
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 1.5 2 2.5 3

Fig. 3. Plots of the estimated tangent direction as a function of the polar angle. The
shape is a circle of radius 10 with a sharp corner in the first quadrant. Solid lines
correspond to expected values, dashed lines to estimations with a grid step of 0.5,
dotted lines to estimations with a finer grid step of 0.25.

248 J.-O. Lachaud, A. Vialard, and F. de Vieilleville

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 0.5 1 1.5 2 2.5 3
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.5 1 1.5 2 2.5 3

Fig. 4. Isotropy of tangent estimators measured with absolute error |θ̂(t)− θ(t)| (thick
solid line: λ-MST, thin solid line: HT, dashed line: ST, dotted line: ET). Left: mean of
absolute error. Right: Maximum of absolute error. For each estimator, 100 experiments
are run on a circle of radius 50 with a center arbitrarily shifted in its pixel. The absolute
error is drawn as a function of the polar angle and gathered by sectors of 5

180π

geometric quantities are computed at curvilinear abscissa k + 1
2 and all DSS

includes k and k + 1).
We first compare the behavior of tangent estimators on smooth and flat parts

and on corners. The shape is a circle in three quadrants and a right angle in the
fourth (see “rsquare” in Table 2). Fig. 3 displays (a subset of) the estimations of
the tangent direction. Estimators that satisfies the convexity/concavity property,
i.e. ET and λ-MST, create a non-decreasing sequence of directions. ST and HT

Table 2. Asymptotic convergence of mean and maximum absolute error for tangent
estimators. Best estimator is shaded. The grid step is denoted by h. The maximum
and minimum curvatures of the shapes are: “circle” (κM = κm = 1), “flower” (κM ≈
5.8, κm ≈ −26.1), “rsquare” (κM = 100, κm = 0)

mean error maximum error

Shape
�����T.E

h 1
10

1
20

1
80

1
320

1
640

1
10

1
20

1
80

1
320

1
640

circle HT 0.0624 0.0411 0.0174 0.0077 0.0049 0.5432 0.5267 0.2717 0.1395 0.0935

ET 0.0830 0.0565 0.0236 0.0098 0.0062 0.3887 0.2695 0.1232 0.0592 0.0422

ST 0.0665 0.0443 0.0185 0.0079 0.0049 0.7700 0.7840 0.4639 0.2450 0.1651

λ-MST 0.0541 0.0378 0.0144 0.0057 0.0035 0.2934 0.1997 0.0770 0.0383 0.0281

flower HT 0.1736 0.1050 0.0364 0.0128 0.0078 1.2836 1.1753 0.7220 0.5269 0.5018

ET 0.1364 0.0868 0.0369 0.0151 0.0095 1.4821 1.2028 0.7317 0.3312 0.2178

ST 0.1258 0.0756 0.0311 0.0123 0.0075 1.2415 0.9831 0.8201 0.7931 0.7878

λ-MST 0.1541 0.0881 0.0293 0.0098 0.0059 1.4821 1.1705 0.6496 0.2483 0.1479

rsquare HT 0.0734 0.0501 0.0204 0.0081 0.0052 0.5228 0.5201 0.2151 0.1809 0.1359

ET 0.0876 0.0572 0.0220 0.0087 0.0054 0.3858 0.2903 0.1498 0.0763 0.0543

ST 0.0834 0.0560 0.0220 0.0084 0.0052 0.7496 0.7775 0.3270 0.3202 0.2452

λ-MST 0.0529 0.0344 0.0127 0.0052 0.0032 0.2880 0.1775 0.0832 0.0440 0.0304

Analysis and Comparative Evaluation of Discrete Tangent Estimators 249

clearly fail, especially at points where the digital contour meets a quadrant
change. Most estimators behave correctly at corners. λ-MST slightly smoothes
the corner at low resolution. The tendency to polygonalize the curve of ET (and
thus FTT) appears clearly on Fig. 3c.

We then evaluate the anisotropy of the estimators with the experiment de-
scribed in Fig. 4. The λ-MST is more isotropic than the others, with a steady
and low mean and maximal error.

We finally examine the asymptotic behavior of the absolute error for different
shapes on Table 2. Both λ-MST and ET have an asymptotic convergence in mean
and in maximum. It is however unclear whether the maximum error of ST and
HT converges toward 0 or not for arbitrary shapes. Although the λ-MST is
not always the best in mean at coarse resolution, it has the fastest asymptotic
convergence in mean and in maximum whatever the shape is.

5 Conclusions

In this paper, we have compared several tangent estimators based on DSS recog-
nition. After a first qualitative analysis, we have proposed a new estimator which
takes the best out of the existing ones. We have checked that it satisfies the con-
vexity/concavity property and we have shown how to compute it efficiently. After
experimental evaluation, the λ-MST appears to be the most robust tangent es-
timator and very often the most accurate. The results are summed up in Table
3. Future work will focus on curvature estimators based on maximal segments
and their properties.

Table 3. Comparison of discrete tangent estimators. The λ-MST estimator has an
average behaviour on corners and seems to be the best elsewhere

tangent straight smooth corners convexity isotropy mean maximal
estimator parts parts /concavity error error
λ-MST + + = Yes∗ + ++ ++

HT = +/− + No − + −
ET + = + Yes = + +
ST = +/− = No − + −

(*) For λ functions satisfying conditions of Theorem 1

References

1. I.M. Anderson and J.C. Bezdek. Curvature and tangential deflection of discrete
arcs: a theory based on the commutator of scatter matrix pairs and its application
to vertex detection in planar shape data. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6:27–40, 1984.

2. D. Coeurjolly. Algorithmique et géométrie discrète pour la caractérisation des
courbes et des surfaces. PhD thesis, Université Lumière Lyon 2, France, 2002.

250 J.-O. Lachaud, A. Vialard, and F. de Vieilleville

3. D. Coeurjolly and R. Klette. A comparative evaluation of length estimators of
digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):252–258, 2004.

4. I. Debled-Renesson and J.-P. Réveillès. A linear algorithm for segmentation of
discrete curves. International Journal of Pattern Recognition and Artificial Intel-
ligence, 9:635–662, 1995.

5. F. Feschet. Canonical representations of discrete curves. Pattern Analysis and
Application. Submitted.

6. F. Feschet and L. Tougne. Optimal time computation of the tangent of a discrete
curve: Application to the curvature. In Proc. DGCI’99, volume 1568 of LNCS,
pages 31–40. Springer, 1999.

7. J.-O. Lachaud and A. Vialard. Discrete deformable boundaries for the segmen-
tation of multidimensional images. In Proc. 4th Int. Workshop on Visual Form,
volume 2059 of LNCS, pages 542–551. Springer, 2001.

8. J.-O. Lachaud and A. Vialard. Geometric measures on arbitrary dimensional dig-
ital surfaces. In Proc. DGCI’03, volume 2886 of LNCS, pages 434–443. Springer,
2003.

9. A. Lenoir, R. Malgouyres, and M. Revenu. Fast computation of the normal vector
field of the surface of a 3D discrete object. In Proc. DGCI’96, volume 1176 of
LNCS, pages 101–112. Springer, 1996.

10. J. Matas, Z. Shao, and J. Kittler. Estimation of curvature and tangent direction
by median filtered differencing. In Proc. of 8th International Conference on Image
Analysis and Processing, pages 83–88, 1995.

11. A. Vialard. Geometrical parameters extraction from discrete paths. In Proc.
DGCI’96, volume 1176 of LNCS, pages 24–35. Springer, 1996.

12. M. Worring and A. W. M. Smeulders. Digital curvature estimation. CVGIP: Image
Understanding, 58:366–382, 1993.

A Proof of Theorem 1

We show here a necessary and sufficient condition for the λ function to define a
λ-MST tangent estimator satisfying the convexity/concavity property.

Theorem 1. If λ is differentiable on]0, 1[, then the λ-MST estimator satisfies
the convexity/concavity property iff d

dt (t
λ′
λ (t)) ≤ 0 and d

dt ((1 − t)λ′
λ (t)) ≤ 0 hold

on this interval.
These two conditions once put together entail λ is necessarily log-concave

(i.e. lnλ is a concave function or d2

dt2 (ln λ(t)) ≤ 0). Furthermore, it is enough to
check d

dt (t
λ′
λ (t)) ≤ 0 for functions symmetric around 1

2 .

Proof. We first rewrite θ̂′(k) as∑
i<j(θi − θj)

(
λ(ej(k))λ′(ei(k))

Li
− λ(ei(k))λ′(ej(k))

Lj

)
(
∑

j λ(ej(k)))2
. (3)

We assume for instance that the angles (θi) of the segment in the pencil around
k are nondecreasing. We must thus prove θ̂′(k) is nonnegative, whatever is the

Analysis and Comparative Evaluation of Discrete Tangent Estimators 251

curve under examination. Since some curves have points with exactly two max-
imal segments going through, Eq. (3) may be reduced to one pair. It is thus
necessary to show that each term of this sum is nonnegative. It is also a suffi-
cient condition. Otherwise said, we have to prove for any i < j,

∀k,mj < k < ni,
λ(ej(k))λ′(ei(k))

Li
− λ(ei(k))λ′(ej(k))

Lj
≤ 0. (4)

Let Rij = ni − mj be the size of the common part of both segments. Setting
t = k−mj

Rij
, we define two analogs of the eccentricities ei(k) and ej(k) as εi(t) =

ei(k) = 1 − Rij

Li
(1 − t) and εj(t) = ej(k) = Rij

Lj
t. Eq. (4) is then equivalent to

∀t ∈]0, 1[, λ(εj(t))
λ′(εi(t))

Li
≤ λ(εi(t))

λ′(εj(t))
Lj

(5)

⇔ Rij

Li

λ′

λ
(εi(t)) ≤ Rij

Lj

λ′

λ
(εj(t)) ⇔

d

dt
(lnλ(εi(t))) ≤ d

dt
(ln λ(εj(t))) (6)

It is easy to see that εi(t) > t > εj(t) which gives the idea to break Eq. (6) in
two parts as follows, for all t ∈]0, 1[:

d

dt
(lnλ(εi(t))) ≤ d

dt
(ln λ(t)) and

d

dt
(lnλ(t)) ≤ d

dt
(lnλ(εj(t))) (7)

Eq. (7) clearly implies Eq. (6), but the converse is also true by letting Li or Lj

tend toward Rij .
We focus on the right part of Eq. (7). Letting δ = Rij

Lj
and f = lnλ, we get

∀δ, 0 < δ < 1,
d

dt
(f(t)) ≤ d

dt
(f(δt)), otherwise said f ′(t) ≤ δf ′(δt). (8)

We now show that Eq. (8) is equivalent to

d

dt
(tf ′(t)) ≤ 0. (9)

Indeed, integrating both terms of the last inequality between δt and t shows
sufficiency. It is also necessary since Eq. (8) can be rewritten with h = (1 − δ)t
as:

f ′(t) ≤ (1 − h

t
)f ′(t − h) (10)

f ′(t) − f ′(t − h)
h

+
f ′(t − h)

t
≤ 0 (11)

Getting the limit when h tends toward 0 and multiplying both sides by t give
tf ′′(t) + f ′(t) ≤ 0, which is exactly Eq. (9). Same reasoning applied to left part
of Eq. (7) bring

d

dt
((1 − t)f ′(t)) ≤ 0, (12)

which concludes the proof. �

Surface Volume Estimation of Digitized
Hyperplanes Using Weighted

Local Configurations

Joakim Lindblad

Centre for Image Analysis, Uppsala University, Uppsala, Sweden
joakim@cb.uu.se

Abstract. We present a method for estimating the surface volume of
four-dimensional objects in discrete binary images. A surface volume
weight is assigned to each 2 × 2 × 2 × 2 configuration of image elements.
The total surface volume of a digital 4D object is given by a summation
of the local volume contributions. Optimal volume weights are derived
in order to provide an unbiased estimate with minimal variance for ran-
domly oriented digitized planar hypersurfaces. Only 14 out of 64 possi-
ble boundary configurations appear on planar hypersurfaces. We use a
marching hypercubes tetrahedrization to assign surface volume weights
to the non-planar cases. The correctness of the method is verified on four-
dimensional balls and cubes digitized in different sizes. The algorithm is
appealingly simple; the use of only a local neighbourhood enables effi-
cient implementations in hardware and/or in parallel architectures.

Keywords: surface volume estimation, marching cubes, digital hyper-
planes, 4D, cell tiling.

1 Introduction

In many applications of digital image analysis, quantitative geometrical mea-
sures, such as length and area of objects, are of foremost interest. When working
with three-dimensional (3D) digital images, an often desired measure is the sur-
face area of a digitized object. With modern imaging techniques and powerful
computers, it has become interesting to look at higher dimensional data volumes.
The four-dimensional (4D) counterpart to surface area is surface volume. In this
paper we present a method to perform accurate surface volume estimations of
4D objects in binary digital images using a technique based on local cell tiling.

In [11, 12] we presented a surface area estimator for 3D images that utilises
only local computations and a small local neighbourhood to obtain an estimate
that is very fast to calculate and still exhibits good performance in terms of
accuracy, precision and robustness. In this paper we extend this methodology to
four dimensions, and derive optimal surface volume weights for the hyxel (hyper
volume picture element) configurations that appear on planar hypersurfaces.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 252–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Surface Volume Estimation of Digitized Hyperplanes 253

2 Previous and Related Work

Visualization methods for high dimensional data are relatively well developed.
There exist tools for 4D plane-tracing (a 4D extension of ray-tracing) and many
techniques based on splatting. The popular Marching Cubes algorithm [13], for
generating a triangulated iso-surface from voxel data, has also been extended to
higher dimensions [1]. Far less is available in the field of image analysis and the
task of extracting quantitative data from high-dimensional images. Concerning
the geometry of digital 4D objects, work on, e.g., distance transforms [2] and
skeletonization [6] in 4D has been presented. To the best of our knowledge, no
surface volume estimation technique for discrete 4D data has previously been
presented in literature. However, many similarities with surface area estimates
of 3D objects and perimeter estimates of 2D objects do exist.

The perimeter of a digitized 2D object can be estimated as the cumulative
distance from pixel centre to pixel centre along the border of the object, where
an isothetic step is given weight 1 and a diagonal one is given weight

√
2. This

is straightforward to accomplish using the Freeman chain code [5], but results
in rather big over-estimates. Starting from an assumption that the boundary of
an object is locally linear, optimal weights for the local steps have been derived,
leading to an unbiased estimator with a minimal mean squared error (MSE) [10,
14]. A similar approach can be taken in order to estimate the surface area of
digitized 3D objects. By counting the local configurations of voxels that appear
on the boundary of a digital object a fast and accurate area estimate is achieved.
In [11, 12] optimal surface area weights were derived, providing an unbiased
estimator with minimal MSE. The method described in this paper is a direct
extension of this technique to the 4D case.

In addition to the local type of estimators mentioned above, different multi-
grid convergent perimeter and surface area estimators exist, see, e.g., [4] for an
overview of perimeter estimators, and [7, 9, 3] for examples of multigrid conver-
gent surface area estimators. This class of estimators ensure convergence toward
the true value as the grid resolution increases [8]. Many multigrid convergent es-
timators are based on finding straight line/plane segments. However, in order to
do so we can no longer use local algorithms. Coeurjolly et al. [3] have presented
efficient algorithms based on discrete normal vector field integration, where the
problem of perimeter/surface area estimation is transformed into a problem of
normal vector estimation. It seems that this approach may be extended to higher
dimensions. To our knowledge no one has so far attempted to do so.

3 Surface Area Estimation

To introduce the methodology, we present, in this section, a brief derivation of
the 3D version of the method; for measuring the surface area of a digitized 3D
object. For a more detailed description see [12].

The estimation is based on counting local configurations of 2 × 2 × 2 voxels.
In a binary image, the number of possible configurations of the eight voxels is

254 J. Lindblad

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Fig. 1. The 14 major 3-cubes of 2 × 2 × 2 voxels. Marked voxel centres are inside the
object. The complementary cases are classified to be the same as the original cases.
Only cases c1, c2, c5, c8, and c9, appear for planar surfaces

223
= 256. Using rotation, mirror, and complement symmetry, the 256 configu-

rations can be grouped into 14 major cases ci, see Fig. 1.
A surface area contribution Ai is assigned to each case (c0 does not represent

a boundary situation, and therefore has zero area contribution). The number
of occurrences Ni of each of the 13 surface configurations is computed for the
digitized object, and the surface area estimate Â of the object is calculated as

Â =
13∑

i=1

AiNi . (1)

The area contributions Ai are optimally selected so as to provide an unbiased
estimate with a minimal MSE when the method is applied to infinite planes
(the surfaces of half-spaces) digitized over an isotropic distribution of normal
directions. This optimization can be justified by the fact that the surface of an
object with limited curvature becomes locally planar as the sampling density
increases. Only five of the 13 possible surface configurations appear for planar
surfaces. We call these five cases the planar cases. They dominate the boundary
of most objects digitized at a resolution high enough to capture the details of
the surface structure.

When performing the optimization, we can, due to the symmetry of the
sampling grid, without loss of generality, restrict the study to planes that can be
expressed as a function z(x, y) = z′

xx + z′
yy + k, 0 ≤ z′

y ≤ z′
x < 1. Voxels with a

centre on, or below, the plane are included in the object. We vary the offset term
k and observe the configurations that appear when a plane of a given normal
direction cuts a column of cubes (an infinite stack of cubes in the z-direction).
Depending on if z′

x + z′
y is less or greater than 1, two different sets are observed.

This is shown in Figs. 2 and 3. We keep track of the intersections between the
surface and all cubes in the column. For example, in Fig. 2(b) the lower cube is
of type c5 and the upper one is of type c1.

For a plane in general position the offset term is uniformly distributed. Given
a specific normal direction n, the expected number of occurrences of each case
Ei = E[Ni|n] per column of intersected cubes, can be directly calculated from
Figs. 2 and 3.

Surface Volume Estimation of Digitized Hyperplanes 255

(a) Case 8
0 ≤ k < 1−z′

x−z′
y

(b) Case 5+1
1−z′

x−z′
y ≤k< 1−z′

x

(c) Case 2+2
1−z′

x ≤ k < 1−z′
y

(d) Case 1+5
1−z′

y ≤ k < 1

Fig. 2. The different cases appearing for z′
x + z′

y ≤ 1 as k is varied

(a) Case 5+1
0 ≤ k < 1−z′

x

(b) Case 2+2
1−z′

x ≤ k < 1−z′
y

(c) Case 1+5
1−z′

y ≤k< 2−z′
x−z′

y

(d) Case 1+9+1
2−z′

x−z′
y ≤ k < 1

Fig. 3. The different cases appearing for z′
x + z′

y > 1 as k is varied

For z′
x + z′

y ≤ 1,
E1 = 2z′

y, E2 = 2(z′
x − z′

y), E5 = 2z′
y, E8 = 1 − z′

x − z′
y,

and for z′
x + z′

y > 1,
E1 = 2z′

y, E2 = 2(z′
x − z′

y), E5 = 2(1 − z′
x), E9 = (z′

x + z′
y − 1).

The number of intersected columns of cubes, for a planar surface segment of area
A and normal direction n, is Ncol(n) = 1√

1+z′
x
2+z′

y
2 A . The estimated surface

area is given by

Â(n) =
13∑

i=1

AiEi(n)Ncol(n) . (2)

The MSE of (2) is minimized over all normal directions, while keeping zero
bias, in order to find optimal values for Ai. On a planar surface cases 1, 5, and
9 always appear together, which leads to a non-unique solution. The reason for
this is that the planar surface continues into the neighbouring cubes and divides
them in a way that creates the co-appearing cases. Leaving A1 as a variable we
obtain the following solution:

A2 = 0.669, A5 = 1.190 − A1, A8 = 0.927, A9 = 1.694 − 2A1. (3)

These weights provide, independent on how we choose A1, an unbiased area
estimate with a coefficient of variation (CV=μ/σ) of 1.40% for planar surfaces.

In order to estimate the surface area of general object boundaries, area con-
tributions have to be assigned to all the 13 surface cases. Since the non-planar

256 J. Lindblad

Table 1. Table of elementary areas assigned to the different 3-cube cases. A1 is left
undefined

A1 =undefined A2 = 0.6690 A3 = 2A1 A4 = 2A1

A5 = 1.1897 − A1 A6 = A1 + A2 A7 = 3A1 A8 = 0.9270
A9 = 1.6942 − 2A1 A10 = 2A2 A11 = 1.5731 A12 = A1 + A5 A13 = 4A1

cases are, in general, scarcely appearing in real object volumes, the area contri-
bution assigned to these cases will have a limited impact on the overall surface
area estimate. Dividing the cubes into (locally) face-connected components, all
but one of the additional cases can be decomposed into the five planar ones.
This way we introduce a minimal number of new values. The only truly new
configuration is c11, which we here assign an area of 1.5731 (derived from a
Marching Cubes triangulation of that case). The surface area weights of all 13
cases are summarized in Table 1, where A1 is left undefined. Note, however,
that this subdivision of cases is not uniquely determined. For example, c7 can
either be split into 3c1 or c9 + c1 depending on if we look at the original or the
complementary case.

For curved surfaces, the relation between cases c1, c5, and c9 no longer holds,
and the specific choice of the free parameter A1 will affect the estimation result.
In [12] the freedom to choose the value of A1 is used to minimize the estima-
tion error of the method when applied to a distribution of digitized balls of
increasing radii.

4 Surface Volume Estimation

For 4D surface volume estimation we use configurations of 2 × 2 × 2 × 2 hyxels,
which in a binary image gives 224

= 65 536 different configurations. Using rota-
tion, mirror, and complement symmetry, they can be grouped into 222 major
cases. 14 of these, shown in Fig. 4, appear on the surfaces of planar volumes. Just
as in the 3D case, we restrict the study to hyperplanes that can be expressed as
a function w(x, y, z) = w′

xx + w′
yy + w′

zy + k, 0 ≤ w′
z ≤ w′

y ≤ w′
x < 1. We vary

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Fig. 4. The 14 planar 4-cubes, appearing on the surface of planar volumes. Marked
hyxel centres are inside the object

Surface Volume Estimation of Digitized Hyperplanes 257

(a) Case 9
0 ≤ k < 1−w′

x−w′
y−w′

z

(b) Case 8+1
1−w′

x−w′
y−w′

z ≤k<
1−w′

x−w′
y

(c) Case 7+2
1−w′

x−w′
y ≤ k <

1−w′
x−w′

z

(d) Case 6+3
1−w′

x−w′
z ≤ k <

1−w′
y−w′

z

(e) Case 5+5
1−w′

y−w′
z ≤ k < 1−w′

x

(f) Case 3+6
1−w′

x ≤k< 1−w′
y

(g) Case 2+7
1−w′

y ≤ k < 1−w′
z

(h) Case 1+8
1−w′

z ≤ k < 1

Fig. 5. The different cases appearing for w′
x +w′

y +w′
z ≤ 1, w′

x ≤ w′
y +w′

z as k is varied

the offset term k and study the configurations that appear when a hyperplane
of a given normal direction cuts a column (in the w-direction) of 4-cubes.

Depending on the slope of the hyperplane, one out of 14 different sets of
configurations appear. The set, w′

x + w′
y + w′

z ≤ 1, w′
x ≤ w′

y + w′
z, is shown in

Fig. 5. Just as in the 3D case, it is straightforward, albeit a bit tedious, to cal-
culate the expected number of cells of each type that appear when a column
of 4-cubes is intersected by a hyperplane of a given normal direction. The con-
figurations are listed in the Appendix. The number of intersected columns of
4-cubes, for a planar surface segment of volume V and normal direction n, is
Ncol(n) = 1√

1+w′
x
2+w′

y
2+w′

z
2 V . The estimated surface volume is given by

V̂ (n) =
14∑

i=1

ViEi(n)Ncol(n) . (4)

We minimize the MSE of (4) over all normal directions, while keeping zero
bias, in order to find optimal values for Vi. Just as in the 3D case, we do not
get enough information from using only planar objects to find a unique solution.
Leaving V1, V2, V3, V5 as variables the optimization leads to the weights presented
in Table 2. These weights provide an unbiased volume estimate with a CV of

Table 2. Table of elementary volumes assigned to the planar 4-cubes

V1 =undefined V2 =undefined V3 =undefined V4 = 0.668
V5 =undefined V6 = 0.609 − V3 + V5 V7 = 1.194 − V2 V8 = 1.707 − V1 − V5

V9 = 0.920 V10 = 0.972 − V1 V11 = 1.558 − V1 − V3

V12 = 2.113 − V1 − V2 − V5 V13 = 2.630 − 2V1 − 2V5 V14 = 1.680 − 2V2

258 J. Lindblad

Fig. 6. The 50 non-planar 4D sub-cases

0.77% for planar hypersurfaces, independent on how we choose V1, V2, V3, V5.
The maximum absolute error, AD=7.97% is reached for hyperplanes aligned
with the digitization grid.

4.1 Curved Volumes

In order to estimate the surface volume of curved 4D objects, we need to assign
volume contributions to all 221 surface cases. Similar as for the 3D case, we
can reduce this number by dividing the 4-cubes into (locally) volume connected
components. This way the 222 major cases can be reduced to 65 sub-cases. Note
that this is less than the number given by Roberts [15]. The reason for this
is that we consider it valid to look at the complement also when splitting the
cells into components (since complement is used anyway to reach the 222 major
cases). This is similar to the optional splitting of c7 into c9 + c1 in the 3D case.
It is an open question how to assign an optimal surface volume weight to the 50
non-planar sub-cases (shown in Fig. 6).

5 Simulations

To verify and evaluate the performance of the estimator, we test the method on
synthetic objects of known surface volumes. The used test objects are 4-balls of
radii 1–80 hyxels and 4-cubes of side lengths 2–160 hyxels. We generate 30 000
instances of each object in the continuous space and digitize them using Gauss
digitization, with a random orientation and position in the digitization grid.
We have assigned surface volume weights derived from a marching hypercubes
tetrahedrization [1] to the non-planar cases that appear on the edges of the
4-cubes, and to the unassigned planar cases, c1, c2, c3, and c5.

Surface Volume Estimation of Digitized Hyperplanes 259

2 5 10 20 50

−10%

−5%

0%

5%

Radius

R
el

at
iv

e
er

ro
r

4−Ball
4−Cube

(a)

1 2 5 10 20 50
0.001%

0.01%

0.1%

1%

10%

100%

Radius

M
ax

 a
bs

ol
ut

e
de

vi
at

io
n

4−Ball
4−Cube

(b)

Fig. 7. Relative error (a) and absolute deviation (b) of the surface volume estimates
for digitized objects of increasing size. The error bars indicate minimum and maximum
values of the estimate

Average relative error and maximum absolute deviation for the surface vol-
ume estimation method are shown in Fig. 7. The surface of a large 4-ball is a good
sampling of hyperplanes of all normal directions and the described surface vol-
ume estimator is therefore expected to exhibit very low variance on such objects.
This is verified by the simulations, where superlinear convergence O(r−α) , α≈2,
is observed. Improved low resolution performance can be achieved by adjusting
the weights V1, V2, V3, and V5. This is beyond the scope of this paper.

6 Summary

We have presented a method for estimating the surface volume of binary 4D
objects using local computations. The surface volume is computed as a sum of
local volume contributions. Optimal volume weights for the 2 × 2 × 2 × 2 con-
figurations of hyxels that appear on digital planar hypersurfaces are derived.
The method gives an unbiased estimate with minimum variance for randomly
oriented planar hypersurfaces. Theoretic worst case CV for the suggested sur-
face volume estimator is 0.77%, and the maximum absolute error is 7.97%. The
maximum error is reached for planar hypersurfaces aligned with the digitization
grid. The solution for planar volumes is not unique and freedom in the choice
of parameters may be used to improve the performance at lower resolutions in
a manner similar to what was done for the 3D case in [12]. For curved volumes
additional cases appear. It is an open question how to assign optimal volume
weights to these cases.

Acknowledgements. We thank Nataša Sladoje for valuable scientific support,
Dr. Rephael Wenger for making his programs for generating iso-surface lookup
tables freely available on the Internet, and Prof. Nahun Kiryati for (gently)
pushing us out into the fourth dimension.

260 J. Lindblad

References

[1] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in any di-
mension using convex hulls. IEEE Trans. on Vision and Computer Graphics,
10(2):130–141, 2004.

[2] G. Borgefors. Weighted digital distance transforms in four dimensions. Discrete
Applied Mathematics, 125(1):161–176, 2003.

[3] D. Coeurjolly, F. Flin, O. Teytaud, and L. Tougne. Multigrid convergence and
surface area estimation. In Theoretical Foundations of Computer Vision, volume
2616 of LNCS, pages 101–119. Springer-Verlag, 2003.

[4] D. Coeurjolly and R. Klette. A comparative evaluation of length estimators. In
Proceedings of the 16th International Conference on Pattern Recognition (ICPR),
pages IV: 330–334, Quebec, 2002. IEEE Computer Science.

[5] H. Freeman. Boundary encoding and processing. In B. S. Lipkin and A. Rosenfeld,
editors, Picture Processing and Psychopictorics, pages 241–266, New York, 1970.
Academic Press.

[6] P. P. Jonker. Skeletons in N dimensions using shape primitives. Pattern Recogni-
tion Lett, 23(4):677–686, 2002.

[7] Y. Kenmochi and R. Klette. Surface area estimation for digitized regular solids. In
L. J. Latecki, R. A. Melter, D. M. Mount, and A. Y. Wu, editors, Vision Geometry
IX, pages 100–111. Proc. SPIE 4117, 2000.

[8] R. Klette. Multigrid convergence of geometric features. In G. Bertrand, A. Imiya,
and R. Klette, editors, Digital and Image Geometry, volume 2243 of LNCS, pages
314–333. Springer-Verlag, 2001.

[9] R. Klette and H. J. Sun. Digital planar segment based polyhedrization for sur-
face area estimation. In C. Arcelli, L. P. Cordella, and G. Sanniti di Baja, edi-
tors, Visual Form 2001, volume 2059 of LNCS, pages 356–366, Capri, Italy, 2001.
Springer-Verlag.

[10] Z. Kulpa. Area and perimeter measurement of blobs in discrete binary pictures.
Computer Graphics and Image Processing, 6:434–454, 1977.

[11] J. Lindblad. Surface area estimation of digitized planes using weighted local con-
figurations. In I. Nyström, G. Sanniti di Baja, and S. Svensson, editors, DGCI,
volume 2886 of LNCS, pages 348–357, Naples, Italy, 2003. Springer-Verlag.

[12] J. Lindblad. Surface area estimation of digitized 3D objects using weighted local
configurations. Image and Vision Computing, 23(2):111–122, 2005. Special issue
on Discrete Geometry for Computer Imagery.

[13] W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution 3D surface
construction algorithm. In Proceedings of the 14th ACM SIGGRAPH on Computer
Graphics, volume 21, pages 163–169, 1987.

[14] D. Proffit and D. Rosen. Metrication errors and coding efficiency of chain-encoding
schemes for the representation of lines and edges. Computer Graphics and Image
Processing, 10:318–332, 1979.

[15] J. C. Roberts and S. Hill. Piecewise linear hypersurfaces using the marching cubes
algorithm. In R. F. Erbacher and A. Pang, editors, Visual Data Exploration and
Analysis VI, Proceedings of SPIE, volume 3643, pages 170–181, 1999.

Surface Volume Estimation of Digitized Hyperplanes 261

Appendix

The expected number of occurrences of the 14 planar 4D-configurations when
a column of 4-cubes is intersected by hyperplanes of different slopes. Cases
which are not mentioned for a specific slope do not appear. Cases c1 and c2
appear with the same frequency for all slopes; E1 = 2w′

z, E2 = 2(w′
y − w′

z).

1a: w′
x + w′

y + w′
z ≤ 1, w′

x ≤ w′
y + w′

z.
E3 = 2(w′

x − w′
y), E5 = 2(w′

y + w′
z − w′

x), E6 = 2(w′
x − w′

y),
E7 = 2(w′

y − w′
z), E8 = 2w′

z, E9 = 1 − w′
x − w′

y − w′
z.

1b: w′
x + w′

y + w′
z ≤ 1, w′

x > w′
y + w′

z.
E3 = 2w′

z, E4 = 2(w′
x − w′

y − w′
z), E6 = 2w′

z,
E7 = 2(w′

y − w′
z), E8 = 2w′

z, E9 = 1 − w′
x − w′

y − w′
z.

2a: w′
x + w′

y + w′
z > 1, w′

x + w′
y ≤ 1, w′

x ≤ w′
y + w′

z.
E3 = 2(w′

x − w′
y), E5 = 2(w′

y + w′
z − w′

x), E6 = 2(w′
x − w′

y),
E7 = 2(w′

y − w′
z), E8 = 2(1 − w′

x − w′
y), E13 = w′

x + w′
y + w′

z − 1.

2b: w′
x + w′

y + w′
z > 1, w′

x + w′
y ≤ 1, w′

x > w′
y + w′

z.
E3 = 2w′

z, E4 = 2(w′
x − w′

y − w′
z), E6 = 2w′

z,
E7 = 2(w′

y − w′
z), E8 = 2(1 − w′

x − w′
y), E13 = w′

x + w′
y + w′

z − 1.

3a: w′
x + w′

y > 1, w′
x + w′

z ≤ 1, w′
x ≤ w′

y + w′
z, w′

x + w′
y − 1 ≤ w′

z.
E3 = 2(w′

x − w′
y), E5 = 2(w′

y + w′
z − w′

x), E6 = 2(w′
x − w′

y),
E7 = 2(1 − w′

x − w′
z), E12 = 2(w′

x + w′
y − 1), E13 = 1 + w′

z − w′
x − w′

y.

3b: w′
x + w′

y > 1, w′
x + w′

z ≤ 1, w′
x > w′

y + w′
z, w′

x + w′
y − 1 ≤ w′

z.
E3 = 2w′

z, E4 = 2(w′
x − w′

y − w′
z), E6 = 2w′

z,
E7 = 2(1 − w′

x − w′
z), E12 = 2(w′

x + w′
y − 1), E13 = 1 + w′

z − w′
x − w′

y.

3c: w′
x + w′

y > 1, w′
x + w′

z ≤ 1, w′
x ≤ w′

y + w′
z, w′

x + w′
y − 1 > w′

z.
E3 = 2(w′

x − w′
y), E5 = 2(w′

y + w′
z − w′

x), E6 = 2(w′
x − w′

y),
E7 = 2(1 − w′

x − w′
z), E12 = 2w′

z, E14 = w′
x + w′

y − 1 − w′
z.

3d: w′
x + w′

y > 1, w′
x + w′

z ≤ 1, w′
x > w′

y + w′
z, w′

x + w′
y − 1 > w′

z.
E3 = 2w′

z, E4 = 2(w′
x − w′

y − w′
z), E6 = 2w′

z,
E7 = 2(1 − w′

x − w′
z), E12 = 2w′

z, E14 = w′
x + w′

y − 1 − w′
z.

4a: w′
x + w′

z > 1, w′
y + w′

z ≤ 1, w′
x ≤ w′

y + w′
z, w′

x + w′
y − 1 ≤ w′

z.
E3 = 2(w′

x − w′
y), E5 = 2(w′

y + w′
z − w′

x), E6 = 2(1 − w′
y − w′

z),
E11 = 2(w′

x + w′
z − 1), E12 = 2(w′

y − w′
z), E13 = 1 + w′

z − w′
x − w′

y.

4b: w′
x + w′

z > 1, w′
y + w′

z ≤ 1, w′
x > w′

y + w′
z, w′

x + w′
y − 1 ≤ w′

z.
E3 = 2w′

z, E4 = 2(w′
x − w′

y − w′
z), E6 = 2(1 − w′

x),
E11 = 2(w′

x + w′
z − 1), E12 = 2(w′

y − w′
z), E13 = 1 + w′

z − w′
x − w′

y.

262 J. Lindblad

4d: w′
x + w′

z > 1, w′
y + w′

z ≤ 1, w′
x > w′

y + w′
z, w′

x + w′
y − 1 > w′

z.
E3 = 2w′

z, E4 = 2(w′
x − w′

y − w′
z), E6 = 2(1 − w′

x),
E11 = 2(w′

x + w′
z − 1), E12 = 2(1 − w′

x), E14 = w′
x + w′

y − 1 − w′
z.

5a: w′
y + w′

z > 1, w′
x + w′

y − 1 ≤ w′
z.

E3 = 2(w′
x − w′

y), E5 = 2(1 − w′
x), E10 = 2(w′

y + w′
z − 1),

E11 = 2(w′
x − w′

y), E12 = 2(w′
y − w′

z), E13 = 1 + w′
z − w′

x − w′
y.

5c: w′
y + w′

z > 1, w′
x + w′

y − 1 > w′
z.

E3 = 2(w′
x − w′

y), E5 = 2(1 − w′
x), E10 = 2(w′

y + w′
z − 1),

E11 = 2(w′
x − w′

y), E12 = 2(1 − w′
x), E14 = w′

x + w′
y − 1 − w′

z.

4c: w′
x + w′

z > 1, w′
y + w′

z ≤ 1, w′
x ≤ w′

y + w′
z, w′

x + w′
y − 1 > w′

z.
E3 = 2(w′

x − w′
y), E5 = 2(w′

y + w′
z − w′

x), E6 = 2(1 − w′
y − w′

z),
E11 = 2(w′

x + w′
z − 1), E12 = 2(1 − w′

x), E14 = w′
x + w′

y − 1 − w′
z.

E. Andres et al. (Eds.): DGCI 2005, LNCS, pp. 263–275, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Rectification of the Chordal Axis Transform and a New
Criterion for Shape Decomposition

Lakshman Prasad

Space and Remote Sensing Sciences Group (ISR-2),
International, Space, and Response Division,

 Los Alamos National Laboratory,
Los Alamos, NM 87545, USA.

prasad@lanl.gov

Abstract. In an earlier work we proposed the chordal axis transform (CAT) as
a more useful alternative to the medial axis transform (MAT) for obtaining
skeletons of discrete shapes. Since then, the CAT has benefited various
applications in 2D and 3D shape analysis. In this paper, we revisit the CAT to
address its deficiencies that are artifacts of the underlying constrained Delaunay
triangulation (CDT). We introduce a valuation on the internal edges of a
discrete shape’s CDT based on a concept of approximate co-circularity. This
valuation provides a basis for suppression of the role of certain edges in the
construction of the CAT skeleton. The result is a rectified CAT skeleton that
has smoother branches as well as branch points of varying degrees, unlike the
original CAT skeleton whose branches exhibit oscillations in tapered sections
of shapes and allows only degree-3 branch points. Additionally, the valuation
leads to a new criterion for parsing shapes into visually salient parts that closely
resemble the empirical decompositions of shapes by human subjects as
recorded in experiments by M. Singh, G. Seyranian, and D. Hoffman.

Keywords: Shape, Delaunay triangulation, chordal axis transform, medial axis,
skeleton, shape decomposition, morphology, co-circularity, shape graph,
grouping, chord strength.

1 Introduction

The skeleton of a shape is an important descriptor that provides structural information
about the shape. Skeletons are used to compare shapes, identify shape parts, and, in
case of thin objects such as textual characters, even represent the shapes themselves.
Blum [1] defined the skeleton of a two dimensional shape with a continuous closed
contour as the locus of centers of maximal discs (i.e., discs touching the shape contour
at two or more points) interior to the shape, with each center attributed the radius of
the corresponding maximal disc. This definition of a shape’s skeleton is known as the
medial axis transform (MAT) of the shape. While the MAT is an elegant
characterization of the skeleton of a shape with a continuous boundary, it has proved
to be difficult to use as a practical tool to analyze shapes. Indeed, for example, minor
oscillations in shape contours due to insignificant features or noise result in skeletal

264 L. Prasad

branches that are not easy to isolate, a skeletal feature may be spatially far-removed
from the contour feature it represents, and a skeleton part may greatly exaggerate or
diminish the importance of the contour feature that gave rise to it (Figs. 1 & 2). The
medial axis transform is not defined for shapes specified by discretely sampled
contours, as typically encountered in digital imagery. Several extensions of the MAT
to discrete shapes have been formulated using pixel morphology [3] and geometry [4,
5]. These methods, however, require uniform or well-sampled representations of the
shape to yield satisfactory skeletons (Fig. 8d).

Fig. 1. Rectangle with
boundary feature

Fig. 2. MAT skeleton
exaggerating feature

2 Background

In earlier works [6, 7, 8] we proposed the chordal axis transform (CAT) as a more
useable and stable definition of the skeleton of a shape that is robust to sparse and
uneven sampling of shape boundary. Since then it has gained currency among
researchers in the area of 2D and 3D shape analysis and modeling [12-15]. In this
section, we will review the CAT, its strengths, and drawbacks to set the context for
this paper.

Definition 1: A maximal chord of tangency (Fig. 3) connects two points of tangency
of a maximal disc inscribed in a shape such that at least one of the two arcs of the
maximal disc’s bounding circle subtended by the chord is free of points of tangency
with the shape's boundary.

Definition 2: The Chordal Axis Transform (CAT) of a planar shape is the set of all
ordered pairs (p,), where p and are either the midpoint and half the length,
respectively, of a maximal chord of tangency, or the center and radius, respectively,
of a maximal disc with three or more maximal chords of tangency.

Although the definition of the CAT appears to be a variation of that of the MAT,
there are important differences between the two transforms. First, the CAT, as
defined, yields a piecewise smooth disconnected protoskeleton (Fig. 5). By joining

 Rectification of the Chordal Axis Transform and a New Criterion 265

the midpoints of the maximal chords of a maximal disc with three or more chords to
the center of the maximal disc if the center lies within the polygon determined by the
chords, or to the center of the longest chord otherwise, we obtain a connected skeleton
of the shape (Fig. 6).

Fig. 3. A maximal disc and the
associated maximal chord of tangency
of a shape with continuous boundary

Fig. 4. An empty circle and the
associated Delaunay triangle of a shape
with discrete boundary

Fig. 5. CAT proto-skeleton
of shape in Fig. 1

Fig. 6. Connected CAT
Skeleton

Second, the CAT can be stably defined for a shape whose boundary is discrete (i.e.,
specified as sequences of points separated in space) (Fig. 8). This is done by replacing
maximal discs by empty circles that pass through three or more points of the shape’s
discrete boundary such that no circle contains a boundary point in its interior that is
visible to two boundary points lying on the circle (Two vertices u and v of a simple
polygon are visible to each other, if the line segment joining u and v does not intersect
the exterior of the polygon). Each such empty circle identifies a triangle whose edges
lying in the shape’s interior replace maximal chords of tangency in the discrete

266 L. Prasad

version of the CAT (Fig. 4). The triangles so formed are indeed the Delaunay
triangles of a constrained Delaunay triangulation (CDT) [2] of the shape’s interior. It
is worth noting here that this extension of the CAT to discrete shapes is natural from
the point of view of constructing skeletons. This is because the constrained Delaunay
triangulation is the geometric dual of the generalized Voronoi axis [2] of the contour
point set. Indeed, the MAT is essentially the Voronoi skeleton of a shape. In using the
dual of the Voronoi axis, we can define a more robust and manipulable skeleton than
the MAT that applies to discrete shapes whose boundaries are sparsely and unevenly
sampled. We can also ensure strong invertibility of the skeleton to recover the shape
[8]. The CDT of a shape’s interior gives rise to three kinds of triangles, namely
Junction triangles (J) that have all their edges inside the shape and signify shape
bifurcations, Sleeve triangles (S) that have one edge in common with the shape
boundary and signify shape prolongations, and Terminal triangles (T) that have two
edges in common with the shape boundary and signify shape terminations. The
connected CAT skeleton for a discretized shape is obtained from its CDT by i) joining
the midpoints of the internal edges of each S-triangle by a line segment, ii) joining the
midpoints of the internal edges of each J-triangle to its circumcenter if the triangle is
acute, or to the midpoint of its longest side if it is obtuse (Figs. 7, 8). These localized
constructions ensure that the CAT skeleton does not cross the boundary of the shape
irrespective of the sparsity of sampling. Henceforth we will restrict ourselves to the
structure of the CAT skeleton in the rest of the paper and direct the interested reader
to [8, 9] for other details and implications of the CAT.

Fig. 7. Construction of skeletal segments in the various types of triangles in the CDT of a
shape: from left to right, skeleton segments in a sleeve triangle, an obtuse junction triangle, an
acute junction triangle, and a terminal triangle

(a) (b) (c) (d)

Fig. 8. Construction of the CAT skeleton of a sparsely and unevenly sampled shape and
comparison with its discrete MAT skeleton: (a) A discrete shape, (b) CDT and construction of
sleeve skeletal segments, (c) Connected skeleton after construction of skeletal segment in the
junction triangle, (d) Discrete MAT skeleton obtained by connecting adjacent Voronoi vertices
(circumcenters of triangles) of the contour points. The comparison shows the stability of the
CAT skeleton over that of the MAT of a shape with sparsely sampled contour

 Rectification of the Chordal Axis Transform and a New Criterion 267

The CAT skeleton of a discrete shape is robust in the face of sparse and irregular
presentations of the shape boundary. It also allows easy excision of insignificant and
noisy features via a simple pruning criterion [6, 7, 8]. Finally, it enables parts-based
decomposition of shapes into structurally meaningful components [8, 9].

3 Drawbacks of the Discrete CAT Skeleton

However, the CAT skeleton, as defined above, has certain structural deficiencies
(which are also present in discrete realizations of the MAT skeleton) that warrant
rectification. The CAT skeleton exhibits oscillations through shape regions that are
tapered (Fig. 9). The CAT skeleton allows only branches of degree three to represent
shape ramifications even when higher degree branches are more natural to represent
them (Fig. 10). These deficiencies are artifacts of giving equally important roles to all
chords (i.e., internal triangle edges of the shape’s CDT) in constructing the CAT
skeleton. Indeed, in a previous work [8], we considered special cases where more than
three points on a shape boundary are co-circular with respect to an empty circle. We
noted that the triangle edges that form the chords of the polygon determined by the
co-circular points are not uniquely defined (i.e., any triangulation of the interior of the
co-circular polygon will be consistent with the Delaunay criterion of triangulation.)
We proposed that the restriction of the shape’s skeleton to such a polygon be
constructed by joining all the midpoints of the polygon’s edges that are internal to the
shape to the circumcenter of the polygon or, if the latter falls outside the polygon, to
the midpoint of longest edge of the polygon that does not lie on the shape boundary.
In effect, we discarded internal shape edges that are common to two co-circular
triangles in the CDT of a shape. We will generalize this notion of co-circularity to
define a valuation on the chords of a shape that will help filter chords which are
common edges of nearly co-circular triangles. The motivation for this is to prevent
common edges of nearly co-circular triangles from participating in the construction of
the skeleton. This will greatly reduce skeleton oscillations in tapered regions of
shapes. Indeed, consider two adjacent, nearly co-circular, sleeve triangles. Unless the
external edges of the triangles are parallel, the midpoints of the internal edges of the
two triangles will not lie on a straight line, thus producing an oscillation in the
skeleton. If the common internal edge of this triangle pair is discounted, then the
skeleton of the polygon determined by the triangle pair is given by the line segment
joining the midpoints of the remaining two internal edges, thus locally rectifying the
CAT skeleton of the shape (Fig. 12).

4 A Measure of Chord Strength

We introduce a valuation on the chords of a discrete shape’s CAT. The chords of the
CAT are edges of the CDT of the shape that are shared by two triangles. Let the
angles opposite a chord c in its two flanking triangles be θ and ϕ. We then define the
strength of c by

268 L. Prasad

S(c) = 1-(+)/ . (1)

Thus S is a valuation on the set of all chords of a shape, with values in the half-
open interval [0, 1). This is because the empty circle condition of the CDT ensures
that the sum of the angles across from a chord does not exceed radians. We will
refer to this valuation as the chord strength. S takes the value 0 on chords that are
flanked by co-circular triangles. This observation is based upon an elementary fact of
Euclidean geometry that the opposite angles of a cyclic quadrilateral add up to
radians. Hence, the smaller the strength of a chord, the closer its flanking triangles are
to being co-circular, and vice versa. We are now ready to suppress the chords of low
strength in the construction of the CAT skeleton. In what follows, we will address
shapes without holes to keep the discussion simple. The techniques described can
easily be extended to shapes with holes as well.

Fig. 9. CAT skeleton showing oscillations in
tapered regions of a rectangular shape

Fig. 10. CAT skeleton showing degree
three branching for a star-like shape

Fig. 11. Corner detail of
Fig 9. showing CDT and
skeleton oscillations

Fig. 12. Rectification of
skeleton (dotted line) by
suppressing weak chord AB

Fig. 13. Skeleton in Fig. 11
rectified by suppressing weak
chords

 Rectification of the Chordal Axis Transform and a New Criterion 269

Fig. 14. Rectified CAT skeleton of
shape in Fig. 10, with a degree 8
branch point

Fig. 15. Schematic of CDT in the neighborhood of
chords at junction of part with shape (left) and shape
necks (center and right)

5 Chord Strength Profile Extrema and Shape Decomposition

The directed chords of a shape can be ordered by traversing the boundary of the shape
and recording in sequence the chords encountered. For instance, at boundary point p,
a directed chord pq joining p to another boundary point q will be recorded, as will the
chord qp on arrival at point q. Thus each chord will be visited twice in traversing the
shape contour. We call the plot of chord strengths versus chord numbers the chord
strength profile (CSP). The CSP is a circular function in that the first and last chords
in this enumeration are neighbors. Using the CSP, we select chords whose strengths
are strictly greater than that of at least one neighbor and greater than or equal to the
strengths of both neighbors. More precisely, the chord ci is selected if and only if

[(S(ci) > S(ci-1)) & (S(ci) S(ci+1))] | [(S(ci) S(ci-1)) & (S(ci) > S(ci+1))] (2)

i.e., the selected chords’ strengths are at least one-sided local maxima of the CSP.
Only these selected chords will be allowed to play a role in determining the skeleton
of the shape.

5.1 Polygonal Decomposition of Shapes

Next, we construct a triangle grouping graph whose vertices are the triangles of the
CDT of the shape, and with an edge between two vertices corresponding to adjacent
triangles if and only if their common edge is a suppressed chord. A connected
component analysis via a depth-first-search traversal of this grouping graph yields a
polygonal decomposition of the shape, with each polygon comprised of pairwise
adjacent, approximately co-circular triangles belonging to the same connected
component. We refer to such polygons decomposing a shape as Delaunay polygons.
As in the case of the CDT of a shape, these polygons can be classified into terminal,
sleeve, and junction Delaunay polygons depending on whether they have one, two, or

270 L. Prasad

more chords, respectively, among their bounding edges. Again, as in the case of
triangles, skeletal segments are constructed in each Delaunay polygon to obtain a
skeleton of the shape. The midpoints of chords of a sleeve Delaunay polygon are
joined together to yield a sleeve skeletal segment. In the case of a junction Delaunay
polygon, we define its barycenter as the weighted average of the midpoints of its
chords, where the weight of each chord’s midpoint is the (normalized) length of the
chord. The midpoints of the chords are then joined to this barycenter to yield a
skeletal segment of the junction Delaunay polygon. The collection of all the skeletal
segments, with their adjacencies inherited from the adjacencies of the parent
Delaunay polygons, form a connected rectified CAT skeleton of the shape. The
suppression of weak chords remedies not only the skeletal oscillations (Figs. 9, 11,
12, 13), but also the purely degree-3 branch points (Figs. 10, 14) forced by the CDT
in the original CAT skeleton prior to rectification.

5.2 Skeleton Pruning

A pruning criterion for excising skeleton segments corresponding to insignificant
shape features is easily specified. For each chord of a junction Delaunay polygon, the
length of the shape boundary arc subtended by it (and not including the polygon,) as a
fraction of total shape boundary length is computed. In our experiments we have
found that this fraction provides a satisfactory measure of the saliency of the part
bounded by the chord and the boundary arc that is also efficient to compute. If this
fraction falls below a predetermined threshold, the chord is an external boundary
segment of a pruned shape. Accordingly, a new barycenter of the junction polygon is
computed with the remaining chords taken into consideration if the remaining chords
number greater than two. Otherwise, the junction Delaunay polygon is demoted to a
sleeve or terminal Delaunay polygon and appropriate skeleton segments are
constructed anew. Other pruning criteria such as excising parts based on the ratio of
distance of furthest point of part from subtending chord to chord length, or alternately,
to the distance of chord from barycenter, may also be implemented at additional
computational cost.

5.3 Visually Salient Shape Decomposition

The selection criterion for a shape’s chords, specified in condition (2), may be applied
repeatedly to the CSPs of successive generations of selected chords, yielding chords
whose strengths are higher order maxima in the original CSP (Fig. 18). These strong
chords correspond to cuts of the shape into visually salient parts. They typically occur
at the intersection of limbs with the shapes and necks of the shape where there is a
narrowing of the shape girth. The reason for this is intuitively captured in Fig. 15
where the structure of the shape around the chord at part junctions and necks forces
the sum of the angles opposite the chord in the flanking triangles of the shape’s CDT
to be smaller, and hence the chord to have greater strength than in other places of the
shape. The strength of a chord weakens with increase in its length for the same
boundary geometry in the vicinity of its endpoints. Interestingly, this behavior is
consistent with the shortcut rule of parsing shapes using shortest cuts, proposed in

 Rectification of the Chordal Axis Transform and a New Criterion 271

[11] based on experiments in human vision. However, in order to ensure the saliency
of the parts resulting from cuts induced by the maxima of the CSP, we bias the CSP
by multiplying the strength of each chord with the ratio of the (smaller) arclength of
the shape subtended at the chord to the length of the chord. This has the effect of
enhancing the strength of chords that subtend visually salient parts of the shape, while
diminishing the strengths of chords that subtend minor or noisy protuberances of the
shape. It is important to note that we do not process the boundaries of shapes by
removing noise or smoothing.

Thus, the CSP provides not only a means of rectifying the CAT skeleton (Fig. 16),
but also a means of decomposing shapes into visually meaningful parts (Fig. 17). A
well known work in this area is that of K. Siddiqi et al [10]. Their approach to shape
decomposition is also motivated by considerations of visual saliency and yields good
results. In contrast, our approach addresses obtaining good shape skeletons as well as
good shape decompositions in a unified manner by proposing a single criterion for
solving both problems. The CSP maps the two-dimensional problem of shape analysis
to the analysis of a one-dimensional function’s extrema. This opens up a host of well
known techniques for analyzing 1-D signals such as wavelet transforms to obtain
hierarchical decompositions of shapes. We note that the shape decompositions
obtained by our method closely resembles the outcomes of experiments in shape
decomposition by M. Singh, G. Seyranian, and D. Hoffman [11] using human
subjects. We believe that the property of strong chords of CDTs to yield visually
meaningful decomposition of shapes has the potential to be developed into a useful
and elegant tool in investigating and understanding shapes.

Fig. 16. Shapes and their rectified CAT skeletons based on 1st order maxima of their CSPs

272 L. Prasad

Fig. 17. Shapes and their decomposition based on higher order (order 4) maxima of their CSP.
Adjacent parts are shown in alternating shades

Fig. 18. The normalized chord strength profile vs. chord visit number of the top left shape in
Fig. 17. indicating 4th order maxima (circled). The four tallest peaks correspond to the two
horizontal cuts (two peaks for each cut, as each chord is visited twice) decomposing the shape
into three salient parts. The shorter circled peaks correspond to cuts across small noisy
protuberances

 Rectification of the Chordal Axis Transform and a New Criterion 273

6 Shapes with Holes

In the case of shapes with g holes, one can define g+1 CSPs, one for each hole
contour, and one for the outer shape contour. The CSPs may then be analyzed
individually for nth order maxima just as in the case of a single CSP of a shape without
holes. In the case of a CSP of a shape with holes, a chord will be encountered only
once in the CSP if it joins two different contours and twice if it joins two points on the
same contour. A chord is retained as a strong chord of the shape if and only if it is a
strong chord (nth order maximum) of at least one CSP. Based on the strong chords
obtained thus, one can construct rectified CAT skeletons and obtain visually salient
decompositions of shapes with holes as well.

Alternatively, one can formulate the problem of finding strong chords of a discrete
shape on the dual graph of its CDT, where the vertices of the graph represent
triangles, and with an edge between each pair of vertices corresponding to adjacent
triangles in the CDT. Each graph edge can be weighted with the strength of the chord
that separates the triangles whose representative vertices the edge connects. Edge
weight maxima can be computed along minimal cycles corresponding to hole
contours and the cycle corresponding to the outer contour. One can then group
vertices that are path connected by edges whose weights correspond to non-maximal
chord strengths to obtain a new graph whose vertices correspond to Delaunay
polygons described before. Iterations of this process yield higher order maxima and
hierarchical shape decompositions.

7 Computational Issues

The constrained Delaunay triangulation of a planar shape specified by n points runs in
o(nlogn) time. The construction of the CSP and detection of maxima is linear in the
number of edges which are 2n-3+3g in number, where g<n/3 is the number of holes.
The connected component analysis on the grouping graph is linear in the number of
vertices (representing the triangles of the shape’s CDT which are n-2+2g in number).
Shape pruning is, again, linear in the number of edges. Finally, skeletonization is also
linear in the number of edges. Thus the overall efficiency of our shape decomposition
and skeletonization scheme is high and amenable to real-time applications.

8 Conclusion

In this paper we have demonstrated a property of the chords of constrained Delaunay
triangulations of 2-D shapes that induces a hierarchy of visually salient
decompositions by defining a valuation on the chords. This valuation, which we call
chord strength, along with the ordering induced by the shape boundary on the
chords, maps the two-dimensional problem of shape decomposition into a one-
dimensional problem of analyzing a function’s extrema. We have briefly
demonstrated how one can obtain rectified shape skeletons as well as visually
meaningful shape decompositions using successive selection of strong chords. The

274 L. Prasad

search for chords that best decompose a shape using the extrema of the chord
strength profile function introduced here can be improved upon significantly and is
part of our ongoing work in shape analysis. The unified approach provided by our
method to both skeletonization and decomposition of shapes is the key contribution
of this paper.

In three dimensions, one can define a valuation characterizing approximate co-
sphericity of two face-adjacent Delaunay tetrahedra by defining the strength of their
interface as the ratio of the distance between their circumcenters to the mean of
their circumsphere diameters. However, the 3-D case is more complex. For
instance, two adjacent co-spherical tetrahedra need not form a convex polytope, and
therefore their interface may be an important structural partition. Thus, additional
conditions will be required in order to extend our ideas presented here to three-
dimensional shapes.

Acknowledgement

This work has been fully supported by the U. S. DOE under contract No. W-7405-
ENG-36 through an LDRD ER (#20030162) research grant. We would like to thank
the reviewers for their helpful comments.

Reference

1. H. Blum.: A Transformation for Extracting New Descriptors of Shape. Symp. Models for
Speech and Visual Form Weiant Whaten-Dunn (Ed) MIT Press (1967)

2. J. E. Goodman, J. O’Rourke. (Eds.): Handbook of Discrete and Computational
Geometry, CRC Press (1997)

3. J. R. Parker: Algorithms for Image Processing and Computer Vision, John Wiley & Sons
(1997)

4. R.L. Ogniewicz: Skeleton-space: A multiscale shape description combining region and
boundary information,” in Proc. IEEE CVPR, Seattle, WA, June 1994

5. D. Attali, A. Montanvert.: Computing and Simplifying 2D and 3D Continuous Skeletons,
Computer Vision and Image Understanding, Vol. 67, Sept. 1997

6. L. Prasad: Morphological Analysis of Shapes, CNLS Newsletter, No. 139, July 1997,
LALP-97-010-139, Center for Nonlinear Studies, Los Alamos National Laboratory

7. L. Prasad, R. L. Rao & G. Zweig: Skeletonization of shapes using Delaunay triangulations,
Fifth SIAM Conference on Geometric Design, Nashville, TN, Nov. 1997

8. L. Prasad, R. L. Rao.: A Geometric Transform for Shape Feature Extraction, Proc. SPIE,
vol. 4117, Vision Geometry IX (2000)

9. L. Prasad, A. Skourikhine, B. Schlei.: Feature-based Syntactic and Metric Shape
Recognition, Proc. SPIE, vol. 4117, Vision Geometry IX (2000)

10. K. Siddiqi, B. B. Kimia: Parts of Visual Form: Computational Aspects, IEEE Trans. on
PAMI, vol. 17, No. 3, March 1995

11. M. Singh, G. Seyranian, D. Hoffman: Parsing Silhouettes: The Short-cut Rule, Perception
and Psychophysics, 61, 636-660 (1999)

12. T. Igarashi, S. Matsuoka, H. Tanaka.: Teddy: A Sketching Interface for 3D Freeform
Design, ACM SIGGRAPH’99, 409-416, Los Angeles, CA (1999)

 Rectification of the Chordal Axis Transform and a New Criterion 275

13. P. Felzenszwalb.: Representation and detection of deformable shapes. Proc. CVPR, vol.1,
pp. 102—108 (2003)

14. J. Arvo, K. Novins : Smart Text: A Synthesis of Recognition and Morphing AAAI Spring
Symposium on Smart Graphics, Stanford, California, pp 140-147, March 2000

15. S. Yamakawa, K. Shimada.: Quad-Layer: Layered Quadrilateral Meshing of Narrow Two-
Dimensional Domains by Bubble Packing and Chordal Axis Transform,
ASME/DETC/DAC (2001)

Generalized Functionality for Arithmetic Discrete
Planes

Valerie Berthé, Christophe Fiorio, and Damien Jamet

LIRMM, Université Montpellier II,
161 rue Ada, 34392 Montpellier Cedex 5 - France

{berthe, jamet, fiorio}@lirmm.fr

Abstract. The discrete plane P(a, b, c, μ, ω) is the set of points (x, y, z) ∈
Z3 satisfying 0 ≤ ax+by+cz+μ < ω. In the case ω = max(|a|, |b|, |c|), the
discrete plane is said naive and is well-known to be functional on a coordi-
nate plane. The aim of our paper is to extend the notion of functionality
to a larger family of arithmetic discrete planes by introducing a suitable
orthogonal projection direction (α, β, γ) satisfying αa+βb+γc = ω. We
then apply this functionality property to the enumeration of some local
configurations, that is, the (m, n)-cubes such as introduced in [VC99].

Keywords: digital planes; arithmetic planes; local configurations; functio-
nality of discrete planes.

The discrete plane P(a, b, c, μ, ω) is the set of integer points (x, y, z) ∈ Z3 sat-
isfying 0 ≤ ax + by + cz + μ < ω. In the case ω = max(|a|, |b|, |c|), the discrete
plane is said naive and is well-known to be functional on one of the coordinate
planes, that is, for any point of P of this coordinate plane, there exists a unique
point in the discrete plane obtained by adding to P a third coordinate. Naive
planes have been widely studied, see for instance [Rev91, DRR94, DR95, AAS97,
VC97, Col02, BB02].

The present paper extends the notion of functionality for naive discrete planes
to a larger family of arithmetic discrete planes. For that purpose, instead of pro-
jecting on a coordinate space, we introduce a suitable orthogonal projection
on a plane along a direction (α, β, γ), in some sense dual to the normal vec-
tor of the discrete plane P(a, b, c, μ, ω), that is, αa + βb + γc = ω, so that the
projection of Z3 and the points of the discrete plane are in one-to-one corre-
spondence. One interest of the notion of functionality is that it reduces a three-
dimensional problem to a two-dimensional one, allowing a better understanding
of the combinatorial and geometric properties of discrete planes. We thus ap-
ply this functionality property to the enumeration of some local configurations,
the (m,n)-cubes, for a large family of arithmetic discrete planes, following the
approach of [Vui99, BV01].

For clarity issues, we have chosen to work here in a three-dimensional space
but all the results and methods presented extend in a natural way to Rn, with
n ≥ 2, as well as to arithmetic discrete lines.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 276–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generalized Functionality for Arithmetic Discrete Planes 277

1 Basic Notions and Arithmetic Discrete Planes

Let (a, b, c) ∈ R3, μ ∈ R and ω ∈ R�
+; the arithmetic discrete plane P(a, b, c, μ, ω)

is defined as follows:

P(a, b, c, μ, ω) = {(x, y, z) ∈ Z3 | 0 ≤ ax + by + cz + μ < ω}.

Moreover, if ω = max{|a|, |b|, |c|} (resp. ω = |a|+ |b|+ |c|) then P(a, b, c, μ, ω) is
said to be naive (resp. standard).

In the present paper, in order to simplify the notation and to facilitate the
generalization of our results to higher dimensions, we use a vector-based repre-
sentation. Let {−→e1 ,−→e2 ,−→e3} be the canonical basis of the R-vector space R3. Let
−→v and

−→
v′ be two vectors of R3. The notation (−→v ,

−→
v′) stands for the usual scalar

product in R3. Let i ∈ {1, 2, 3}, we denote by vi = (−→v ,−→ei) the i-th coordinate
of −→v related to the basis {−→e1 ,−→e2 ,−→e3}.

Hence, for any arithmetic discrete plane P, there exist a vector −→v ∈ R3 and
two real numbers μ ∈ R and ω ∈ R�

+ such that

P = {−→x ∈ Z3 | 0 ≤ (−→x ,−→v) + μ < ω}.

In the sequel of this paper, we denote such a plane by P(−→v , μ, ω). For a given
−→α ∈ Z3, let Π−→α : R3 → {−→x ∈ R3 | (−→α ,−→x) = 0} stand for the orthogonal
projection map onto the plane (−→α ,−→x) = 0. We furthermore use the notation
π−→α when we consider the restriction of the projection Π−→α to a subset of R3, as
for instance π−→α : P → {−→x ∈ R3 | (−→α ,−→x) = 0}, for a discrete plane P.

Let us recall a classical property of naive discrete planes having a positive
normal vector:

Theorem 1. [DRR94] Let P = P(−→v , μ, ω) be a naive discrete plane. If vi = ω,
for i = 1, 2 or 3, then P is in bijection with the integer points of the plane
(−→ei ,−→x) = 0 by the projection map Π−→ei

, that is, the restriction map π−→ei
: P −→

Π−→ei
(Z3) is a bijection. The plane (−→ei ,−→x) = 0 is called a functional plane of P.

An analogous result holds for standard discrete planes:

Theorem 2. [BV00] Let P = P(−→v , μ, ω) be a standard discrete plane. Let
−→α = −→e1 + −→e2 + −→e3 . Then, the restriction map π−→

α
: P −→ Π−→

α
(Z3) is a

bijection.

2 Generalized Functionality

First, let us notice that in each of the two cases investigated in Theorem 1 and 2,
the following property holds: let P be a naive or a standard discrete plane with
normal vector −→v and with thickness ω; then there exists a vector −→α in Z3 such
that the restriction map π−→

α
: P −→ Π−→

α
(Z3) is a bijection, and (−→α ,−→v) = ω.

In this section, we extend this property to any discrete plane P(−→v , μ, ω)
whatever its thickness ω by introducing a dual vector −→α ∈ Z3

278 V. Berthé, C. Fiorio, and D. Jamet

such that (−→v ,−→α) = ω. Furthermore, we improve this result by showing that
the projections π−→α are the only ones which provide a one-to-one correspon-
dence between the discrete plane P(−→v , μ, ω) and the projection of Z3; this will
then yield a one-to-one correspondence between a discrete plane and a two-
dimensional lattice.

2.1 A Bijective Projection for Arithmetic Discrete Planes

Theorem 3. Let P = P(−→v , μ, ω) be a discrete plane where −→v ∈ R3 is a non-
zero vector, μ ∈ R and ω ∈ R�

+. Let −→α ∈ Z3 such that gcd(α1, α2, α3) = 1
and (−→α ,−→v) �= 0. Then, π−→α : P −→ Π−→α (Z3) is a bijection if and only if
|(−→α ,−→v)| = ω.

The proof of Theorem 3 first requires a technical lemma:

Lemma 1. Let P = P(−→v , μ, ω) be a discrete plane with (−→v , μ, ω) ∈ R3 × R ×
R�

+.

1. If dimQ(v1, v2, v3) = 1, then there exists (
−→
v′ , μ′, ω′) ∈ Z3 × Z × N such that

P = P(
−→
v′ , μ′, ω′) and gcd(v′

1, v
′
2, v

′
3) = 1.

2. If dimQ(v1, v2, v3) > 1, then the family ((−→x ,−→v) + μ)−→x ∈P is dense in [0, ω[.

Proof. 1. Let us suppose that dimQ(v1, v2, v3) = 1. Then, there exists ζ ∈
R�

+ such that (ζv1, ζv2, ζv3) ∈ Z3. Let
−→
v′ = ζ−→v , μ′ = '−ζμ(and ω′ =

'ζω − ζμ(− '−ζμ(. An easy computation gives P(−→v , μ, ω) = P(
−→
v′ , μ′, ω′).

Finally, according to [AAS97], −→v can be chosen with gcd(v1, v2, v3) = 1.
2. If dimQ(v1, v2, v3) > 1, then we conclude by the classical following result:

the set {m + nα | (m,n) ∈ Z2} is dense in R if α /∈ Q.

With the hypothesis of Lemma 1, let us observe that P(
−→
v′ , μ′, ω′) is a naive

(resp. standard) discrete plane, if so is P(−→v , μ, ω).

Proof of Theorem 3. We assume w.l.o.g that (−→α ,−→v) > 0. Let −→x = (x1, x2, x3),−→
x′ = (x′

1, x
′
2, x

′
3) ∈ Z3; π−→α (−→x) = π−→α (

−→
x′) if and only if there exists (k, k′) ∈ Z2

such that k′(
−→
x′ − −→x) = k−→α . With no loss of generality we can suppose that

gcd(k, k′) = 1; then, k′ divides gcd(α1, α2, α3) and |k′| = 1. In other words,
π−→α (−→x) = π−→α (

−→
x′) if and only if there exists k ∈ Z such that

−→
x′ = −→x + k−→α .

Moreover, −→x + k−→α ∈ P if and only if

−((−→x ,−→v) + μ)
(−→α ,−→v)

≤ k <
ω − ((−→x ,−→v) + μ)

(−→α ,−→v)
.

1) Let us first assume that (−→α ,−→v) = ω. Then,

#
[[

−((−→x ,−→v) + μ)
(−→α ,−→v)

,
ω − ((−→x ,−→v) + μ)

(−→α ,−→v)

[[
= 1,

and we have proved that π−→α : P −→ Π−→α (Z3) is a bijection.

Generalized Functionality for Arithmetic Discrete Planes 279

2) Conversely, let us assume that π−→α : P −→ Π−→α (Z3) is a bijection.
i. If dimQ(v1, v2, v3) = 1, then, thanks to Lemma 1, we can suppose that

−→v ∈ Z3, with gcd(v1, v2, v2) = 1, and (μ, ω) ∈ Z × N�. Let −→x ∈ Z3 such
that (−→x ,−→v) + μ = 0. Then −→x ∈ P and (−→x + −→α ,−→v) + μ = (−→x ,−→v) +
(−→α ,−→v) + μ = (−→α ,−→v) > 0. Moreover, π−→α (−→x + −→α) = π−→α (−→x). Since
π−→α is injective then −→x + −→α /∈ P, and hence (−→α ,−→v) ≥ ω. On the other
hand, let

−→
x′ ∈ Z3 such that (

−→
x′ ,−→v)+μ = −1. Then, (

−→
x′ +−→α ,−→v)+μ =

(
−→
x′ ,−→v) + (−→α ,−→v) + μ = (−→α ,−→v) − 1 ≥ 0. Since π−→α is surjective and

(−→α ,−→v) > 0, then −→x +−→α ∈ P, that is, (−→α ,−→v)−1 < ω, or equivalently,
(−→α ,−→v) ≤ ω.

ii. Let us suppose that dimQ(v1, v2, v3) ≥ 2. Then, each interval[
−((−→x ,−→v)+μ)

(−→α ,−→v) , ω−((−→x ,−→v)+μ)
(−→α ,−→v)

[
, with −→x ∈ P, contains one and exactly one

integer if and only if (−→α ,−→v) = ω by Lemma 1.

Projecting according to −→α corresponds to looking at the plane along a di-
rection parallel to −→α . Moreover, Theorem 3 states that, looking at the discrete
plane P(−→v , μ, ω) along this direction, one can see all points of P(−→v , μ, ω) as
if they were on the plane (−→α ,−→x) = 0. In Section 2.3, we show that a natural
regular lattice structure emerges from this point of view.

As a generalization of functional planes for naive discrete planes, we define:

Definition 1. Let P = P(−→v , μ, ω) be a discrete plane with −→v ∈ R3 a non-zero
vector, μ ∈ R and ω ∈ R�

+. Let −→α ∈ Z3 such that π−→α : P −→ Π−→α (Z3) is a
bijection. The plane (−→α ,−→v) = 0 is called a (generalized) functional plane of P.

2.2 Existence of a Dual Vector

In the case of an arithmetic discrete plane with normal vector −→v ∈ R3 and
thickness ω ∈ R�

+, there is no reason for a vector −→α ∈ Z3 to exist satisfying
(−→α ,−→v) = ω (consider the case (v1, v2, v3, ω) is Q-free). However, if P(−→v , μ, ω)
is an arithmetic discrete plane with normal vector −→v ∈ Z3, then, according to
Lemma 1, we can suppose that ω ∈ Z and gcd(v1, v2, v3) = 1. We then deduce
from Bezout’s Lemma that there exists a vector −→α ∈ Z3 such that (−→α ,−→v) = ω.
Let us prove now that −→α ∈ Z3 can be chosen such that gcd(α1, α2, α3) = 1.

Theorem 4. Let P(−→v , μ, ω) be an arithmetic discrete plane with (−→v , μ, ω) ∈
Z3 ×Z×Z�

+ and gcd(v1, v2, v3) = 1. There exists −→α ∈ Z3 such that (−→α ,−→v) = ω
and gcd(α1, α2, α3) = 1. In other words, there exists −→α ∈ Z3 such that π−→α :
P(−→v , μ, ω) −→ Π−→α (Z3) is a bijection.

Proof. Let −→
β ∈ Z3 such that (−→β ,−→v) = 1. Then, (ω−→

β ,−→v) = ω. Let −→u ∈ {−→x ∈
Z3 | (−→x ,−→v) = 0}, let d = gcd(u1, u2, u3) and let −→α = ω

−→
β + d−1−→u . Then, an

easy computation gives (−→α ,−→v) = ω and gcd(α1, α2, α3) = 1. We end the proof
by applying Theorem 3.

We have illustrated Theorem 4 in Figure 1 in the case of a discrete line for a
better visualisation of the situation.

280 V. Berthé, C. Fiorio, and D. Jamet

−→e1

−→e2

O −→α

(−→α , −→x) = 0

Fig. 1. Generalized functionality: the orthogonal projection of the discrete line 0 ≤
7x1 + 10x2 + μ < 24 onto the line 2x + y = 0

2.3 Functional Regular Lattice Associated to an Arithmetic
Discrete Plane

Let us see now how any arithmetic discrete plane P can be recoded in a functional
way on a regular two-dimensional lattice, despite its three-dimensional structure.

Let P = P(−→v , μ, ω) be an arithmetic discrete plane. Let −→α ∈ Z3 such that
gcd(α1, α2, α3) = 1 and (−→α ,−→v) = ω (in case (−→v , μ, ω) ∈ Z3 × Z × N�, and
gcd(v1, v2, v3) = 1, the existence of such a vector −→α comes from Theorem 4).
One of the coefficients αi, for i ∈ {1, 2, 3} being non-zero, we assume in this
section that α3 �= 0 with no loss of generality.

First, let us notice that since Π−→α (−→α) = −→0 , then, for all −→x ∈ Z3,

Π−→α (−→e 3) = −α1

α3
Π−→α (−→e1) − α2

α3
Π−→α (−→e2).

Then, for all −→x ∈ Z3,

Π−→α (−→x) = x1Π−→α (−→e1) + x2Π−→α (−→e2) + x3Π−→α (−→e3)

=
(
α3x1 − α1x3

α3

)
Π−→α (−→e1) +

(
α3x2 − α2x3

α3

)
Π−→α (−→e2)

and
Π−→α : R3 −→ {−→x ∈ R3 | (−→α ,−→x) = 0}

−→x "→ α3x1−α1x3
gcd(α1,α3)

−→
f1 + α3x2−α2x3

gcd(α2,α3)
−→
f2 ,

(1)

with
−→
f1 =

gcd(α1, α3)
α3

Π−→α (−→e1) and −→
f2 =

gcd(α2, α3)
α3

Π−→α (−→e2).

We thus deduce that Γ−→α = Π−→α (Z3) = Π−→α (P) is a sub-lattice of the two-
dimensional lattice Z

−→
f1 + Z

−→
f2 . The lattice Γ−→α is called a functional lattice of

P. This generalizes the concept of functionality defined for naive discrete planes
as a projection onto the integer points of one of the coordinate planes.

Generalized Functionality for Arithmetic Discrete Planes 281

3 From a Functional Lattice to the Associated Discrete
Plane

Let P = P(−→v , μ, ω) be an arithmetic discrete plane and Γ−→α be a functional
lattice of P (see Section 2.3). A natural question is: “given an element −→y ∈ Γ−→α ,
how can we recover the unique vector −→x ∈ P such that π−→α (−→x) = −→y ? ” In
the following, we investigate this question for the classical classes of arithmetic
discrete planes, namely the naive, the standard [Rev91, DRR94, DR95] and the
graceful ones [BB99, BB02].

3.1 Generalized Functionality for a Particular Class of Discrete
Planes

Let P(−→v , μ, ω) be an arithmetic discrete plane and let −→α ∈ Z3 such that
(−→α ,−→v) = ω. In this section, we assume that there exists i ∈ {1, 2, 3} such
that αi = 1. This condition includes the set of naive, standard and graceful
arithmetic planes (see Section 3.2). Let us thus suppose that α3 = 1. In this
case, let us notice that Γ−→α = Z

−→
f1 + Z

−→
f2 .

Let −→y ∈ Γ−→α . From now on, if no confusion is possible with the representation
of −→y related to the basis {−→e1 ,−→e2 ,−→e3}, we will denote (y1, y2) the unique pair of
integers such that −→y = y1

−→
f1 + y2

−→
f2 .

Let −→x ∈ P and let −→y = π−→α (−→x) ∈ Γ−→α . According to (1), one has x1 =
y1 + α1x3 and x2 = y2 + α2x3. Hence, (−→x ,−→v) + μ = y1v1 + y2v2 + x3(α1v1 +
α2v2 + v3) + μ and

0 ≤ (−→x ,−→v) + μ = v1y1 + v2y2 + x3ω + μ < ω. (2)

Thus, given any −→y ∈ Z2, we can easily recover the unique vector −→x ∈ P such
that π−→α (−→x) = −→y . Indeed, let us first note that (2) yields an explicit formula
for the height x3 of the points of P, that is, x3 = −

⌊
v1y1+v2y2+μ

ω

⌋
. Let us call

HP,−→α : Γ−→α −→ Z the function which to any point y1
−→
f1 + y2

−→
f2 ∈ Γ−→α associates

the height x3 of the corresponding point −→x ∈ P, that is, the unique point −→x ∈ P
such that π−→α (−→x) = −→y :

HP,−→α : −→y "→ −
⌊
v1y1 + v2y2 + μ

ω

⌋
.

One thus obtains:

Proposition 1. If α3 = 1, then the function π−1−→α : Γ−→α −→ P is defined by, for
all −→y ∈ Γ−→α :

π−1−→α (−→y) =

t⎛⎝y1
y2
0

⎞⎠+ HP,−→α (y1, y2)

t⎛⎝α1
α2
1

⎞⎠. (3)

282 V. Berthé, C. Fiorio, and D. Jamet

3.2 Classical Examples

Let us suppose that −→v ∈ N3, and v3 = max{v1, v2, v3}. If P is a naive or a
standard discrete plane, then we can suppose α3 = 1, since vi ≥ 0 for i ∈ {1, 2, 3}.
In the special case of naive discrete planes, we recover the already known formula:

Corollary 1. If P is a naive discrete plane, then −→α = −→e3 , for all −→x ∈ P,
π−→α (−→x) = x1

−→e1 + x2
−→e2 and for all −→y ∈ Γ−→α ,

π−1−→e3
(−→y) = y1

−→e1 + y2
−→e2 −

⌊
v1y1 + v2y2 + μ

v3

⌋
−→e3 .

Concerning the case of the standard discrete planes, we obtain, as a direct con-
sequence of Proposition 1:

Corollary 2. If P is a standard discrete plane, then −→α = −→e1 +−→e2 +−→e3 , for all
−→x ∈ P, π−→α (−→x) = (x1 − x3)−→e1 + (x2 − x3)−→e2 , and for all −→y ∈ Γ−→α ,

π−1−→e3
(−→y) =

t⎛⎝y1
y2
0

⎞⎠−
⌊
v1y1 + v2y2 + μ

v1 + v2 + v3

⌋ t⎛⎝1
1
1

⎞⎠.

Let us suppose now that P = P(−→v , μ, ω) is a graceful plane, that is, 0 ≤ v1,≤
v2 ≤ v3 and ω = max(v1+v2, v3). If v1+v2 ≤ v3, then P is a naive discrete plane
and this case has already been studied. Let us then assume that ω = v1 + v2.
Let −→α = −→e1 + −→e2 . Then, for all −→x ∈ P, π−→α (−→x) = (x1 − x2)−→e1 + x3

−→e3 .
Up to a permutation on the set {α1, α2, α3}, we recover the following from

Proposition 1:

Proposition 2. If P is a graceful plane. Then −→α = −→e1 + −→e2 and the function
π−1−→α : Γ−→α −→ P is defined by, for all −→y ∈ Γ−→α ,

π−1−→α (−→y) =

t⎛⎝ 0
y1
y2

⎞⎠+
⌈
v2y1 − v3y2 + μ

v1 + v2

⌉ t⎛⎝1
1
0

⎞⎠.

4 Plane Partitions and Local Configurations

The aim of this section is to apply the previous results to the study of (m,n)-
cubes and local configurations, generalizing the study performed for naive planes
in [VC97, Sch97, Gér99, VC99, Col02]. For the sake of consistency, we call them
here −→m -cubes rather than (m,n)-cubes.

Let P = P(−→v , μ, ω) be an arithmetic discrete plane and let −→α ∈ Z3 such that
gcd(α1, α2, α3) = 1 and (−→α ,−→v) = ω (recall that if −→v ∈ Z3 and gcd(v1, v2, v3) =
1, then the existence of −→α is ensured by Theorem 4). Let us assume furthermore
that α3 = 1.

Generalized Functionality for Arithmetic Discrete Planes 283

0 −1

−1−1

−2

−1

−2

−2−2

−→
f1

−→
f2

Fig. 2. From left to right: a local configuration of the discrete plane P(4−→e1 + 2−→e2 +
5−→e3 , 0, 7) and its corresponding preimage by π−1−→e2+−→e3

Let −→m ∈ (N�)2 be given. By −→m -cube, we mean a local configuration in the
discrete plane that can be observed thanks to π−→α through an −→m -window in the
projection lattice Γ−→α . More precisely,

Definition 2. Let −→m ∈ (N�)2. The −→m -cube C(−→y ,−→m), with −→y ∈ Γ−→α , is defined
as the following subset of P:

C(−→y ,−→m) =
{
π−1−→α (−→y + −→

i),−→i ∈ [[0,m1[[×[[0,m2[[
}
.

In order to enumerate the different types of −→m -cubes that occur in P, we rep-
resent them as local configurations as follows.

Definition 3. The −→m -local configuration LC(−→y ,−→m), with −→y ∈ Z2 and m ∈
(N�)2, is defined as follows:

LC(−→y ,m) = [HP,−→α (−→z) − HP,−→α (−→y)]−→z ∈[[0,m1−1[−→f1+[[0,m2−1[[−→f2
.

We say that −→y is an index of occurrence of the local configuration LC(−→y ,−→m).

Let us note that a local configuration is a plane partition.

Example 1. For instance, let us consider the arithmetic discrete plane P =
P(−→v , μ, ω) with −→v = 4−→e1 +2−→e2 +5−→e3 , μ = 0 and ω = 9. Let −→α = −→e1 +−→e3 . We
illustrate the local configuration LC(−→f1 +−→

f2 , 3(−→e1 +−→e2)) of P and its preimage
by π−1−→α in Fig. 2.

We follow here the approach developed in [Vui99]. For a naive discrete plane
P, it is well known that, given two points −→x and

−→
x′ of P such that their

projections by π−→α are 4-connected in the functional plane, then |x3 −x′
3| ≤ 1. In

other words, the difference between the height of −→x and
−→
x′ is at most 1. A quite

unexpected fact is that this property holds for any arithmetic discrete plane with
α3 = 1. More precisely, it is easy to see that, for all −→y ∈ Γ , HP,−→α

(
−→y + −→

f1

)
−

HP,−→α (−→y)) takes only two values, namely −
⌊

v1
ω

⌋
and −

⌊
v1
ω

⌋
− 1. In the same

way, HP,−→α
(
−→y + −→

f2

)
−HP,−→α (−→y)) takes only the values −

⌊
v2
ω

⌋
and −

⌊
v2
ω

⌋
−1.

284 V. Berthé, C. Fiorio, and D. Jamet

−) v1
ω * − 1; we similarly define Ev and Ov. It is now natural to introduce the

following two-dimensional sequence:

U = (U−→y)−→y ∈Γ−→α = (HP,−→α (−→y) mod 2)−→y ∈Γ−→α ∈ {0, 1}Z
2
.

By definition, it is easily seen that the sequence U satisfies:

∀−→y ∈ Γ−→α , U−→y = 0 if and only if − y1v1 + y2v2 + μ

ω
mod 2 ∈ [0, 1[.

Let w = [wy]y∈[[0,m1−1]]×[[0,m2−1[[be a word of size m1×m2 over {0, 1}. We define
the complement w of w as follows: w = [wy]y∈[[0,m1−1[[×[[0,m2−1[[, where 1 = 0
and 0 = 1. Let us recall [Vui99, BV00] that the set of factors of the sequence U
is stable under complementation. We thus introduce the following equivalence
relation:

v ∼ w if and only if v ∈ {w,w}.

We have the following theorem, inspired by [Vui99]:

Theorem 5. There is a natural bijection between the equivalence classes of the
relation ∼ of the factors of the sequence U and the −→m -local configurations of P.

Proof. Consider the local configuration L = LC(−→y ,−→m); we can associate to it
the m1 × m2 word

[L(−→z) mod 2]−→z ∈[[0,m1−1[[−→f1+[[0,m2−1[[−→f2
,

that we denote for short L mod 2. If HP,−→α (−→y) is even, then L mod 2 is a factor
of the two-dimensional sequence U ; otherwise, HP,−→α (−→y) is odd and L mod 2
is a factor of U and so is L mod 2, by stability of the set of factors of U by
complementation.

Conversely, let us show how we can canonically reconstruct a −→m -local config-
uration, with −→m ∈ (N�)2, from a given m1 ×m2-factor w of the two-dimensional
sequence U . Let us first assume that w−→0 = 0. We define a plane partition
H = [H(−→z)]−→z ∈[[0,m1−1]]−→f1+[[0,m2−1]]−→f2

by induction as follows: we set H(−→0) = 0;
let −→z ∈ [[0,m1−1]]−→f1 +[[0,m2−1]]−→f2 be a non-zero vector. If w−→z +−→

f1
= w−→z , then

we set H(−→z +−→
f1) = H(−→z)+Eh. Otherwise, we set H(−→z +−→

f1) = H(−→z)+Oh.
Similarly, if w−→z +−→

f2
= w−→z , then we set H(−→z + −→

f2) = H(−→z) + Ev. Otherwise,
we set H(−→z + −→

f2) = H(−→z) + Ov.
The plane partition H is a local configuration of P; indeed, if w occurs at

index −→y in U , then H = LC(−→y ,−→m) and w = (H mod 2) since H(−→y) is even
(we have w−→0 = 0). Now, if w−→0 = 1, we apply the same reconstruction process to
w. We recover again a local configuration LC(−→y ,−→m) such that w = (LC(−→y ,−→m)
mod 2).

In each case, one of these values is odd, whereas the other one is even; we define
Eh and Oh to be respectively the even and the odd value taken by −) v1

ω * and

Generalized Functionality for Arithmetic Discrete Planes 285

Let us now investigate the enumeration of −→m -cubes occuring in a given arith-
metic plane. The number of (3, 3)-cubes included in a given naive arithmetic
discrete plane has been proved to be at most 9 in [VC97]. More generally, in
[Rev95, Gér99], the authors proved that, given a naive arithmetic discrete plane
P, P contains at most m1m2

−→m -cubes. In the following theorem, we show that
this property also holds for −→m -local configurations in an arithmetic discrete plane
P(−→v , μ, ω), which is non-necessarily naive.

Theorem 6. Let P = P(−→v , μ, ω) be a discrete plane, −→α ∈ Z3 such that
(−→α ,−→v) = ω and α3 = 1, and let −→m ∈ (N�)2. Then, P contains at most m1m2
−→m -local configurations.

Proof. According to [Vui99, BV00], the factors of size m1×m2 of the sequence U
are in one-to-one correspondence with the intervals of R/2Z of extremal points
− i1v1+i2v2

ω and − i1v1+i2v2
ω +1 with (i1, i2) ∈ [[0,m1 − 1]]× [[0,m2 − 1]]. There are

at most 2m1m2 such points and the result follows from Theorem 5.

5 Conclusion and Perspectives

The aim of the present work was to introduce suitable tools generalizing the
classical ones used in the study of arithmetic discrete planes. We have exhibited
a generalized functionality for arithmetic discrete planes P(−→v , μ, ω) and proved
that, as soon as |(−→α ,−→v)| = w and gcd(α1, α2, α3) = 1, there is a one-to-one
correspondence between P and a two-dimensional lattice Γα. Thanks to these
results, we have shown for various classes of arithmetic discrete planes, how to
recover −→x ∈ P in correspondence with any −→y ∈ Γα. We also have investigated
plane partitions and local configurations and extended the well-known result on
the number of (m,n)-configurations in a naive plane, that is, there are at most
mn such configurations.

This approach offers new perspectives to investigate further general prop-
erties of arithmetic discrete planes of any thickness. In particular, we plan
to use it to generate arbitrarily large parts of discrete planes via symbolic
substitutions following [ABS04], to recover the corresponding Farey tessela-
tion as well as the symmetry properties of −→m -local configurations of a discrete
plane [VC99], and finally as a new approach to the recognition problem of dis-
crete planes [FST96, FP99, VC00].

Acknowledgements

We would like to thank Fabrice Philippe for a careful reading of this paper.

One deduces, in particular, from Theorem 5 that any local configuration of
the discrete plane P occurs at least twice: once at an index −→y with H(−→y) even
and second, at an index −→y such that H(−→y ′) is even.

286 V. Berthé, C. Fiorio, and D. Jamet

[ABS04] Pierre Arnoux, Valérie Berthé, and Anne Siegel. Two-dimensional Iterated
Morphisms and Discrete Planes. Theoret. Comput. Sci., 319:145–176, 2004.

[BB99] Valentin E. Brimkov and Reneta P. Barneva. Graceful Planes and Thin
Tunnel-Free Meshes. In DGCI, 8th International Conference, volume 1568
of LNCS, pages 53–64, 1999.

[BB02] Valentin E. Brimkov and Reneta P. Barneva. Graceful Planes and Lines.
Theoret. Comput. Sci., 283:151–170, 2002.

[BV00] Valérie Berthé and Laurent Vuillon. Tilings and Rotations on the Torus:
A Two-Dimensional Generalization of Sturmian Sequences. Discrete Math.,
223:27–53, 2000.

[BV01] Valérie Berthé and Laurent Vuillon. Palindromes and Two-Dimensional Stur-
mian Sequences. J. Autom. Lang. Comb., 6(2):121–138, 2001.

[Col02] Marie Andrée Jacob-Da Col. About Local Configurations in Arithmetic
Planes. Theoret. Comput. Sci., 283:183–201, 2002.

[DR95] Isabelle Debled-Renesson. Reconnaissance des Droites et Plans Discrets.
Thèse de doctorat, Université Louis Pasteur, Strasbourg, France, 1995.

[DRR94] Isabelle Debled-Renesson and Jean-Pierre Reveillès. A New Approach to
Digital Planes. In Vision geometry III, Proc. SPIE, volume 2356, Boston,
USA, 1994.

[FP99] Jean Françon and Laurent Papier. Polyhedrization of the boundary of a voxel
object. In DGCI, 8th International Conference, volume 1568 of LNCS, pages
425–434, 1999.

[FST96] Jean Françon, Jean-Maurice Schramm, and Mohamed Tajine. Recognizing
Arithmetic Straight Lines and Planes. In DGCI, 6th International Workshop,
LNCS, pages 141–150, 1996.

[Gér99] Yan Gérard. Local Configurations of Digital Hyperplanes. In DGCI, 8th
International Conference, volume 1568, pages 65–75, 1999.

[Rev91] Jean-Pierre Reveillès. Calcul en Nombres Entiers et Algorithmique. Thèse
d’état, Université Louis Pasteur, Strasbourg, France, 1991.

[Rev95] Jean-Pierre Reveillès. Combinatorial Pieces in Digital Lines and Planes. In
Vision geometry IV, Proc. SPIE, 2573, volume 2573, pages 23–24, San Diego,
CA, 1995.

[Sch97] Jean-Maurice Schramm. Coplanar Tricubes. In DGCI, 7th International
Workshop, volume 1347 of LNCS, pages 87–98, 1997.

[VC97] Joëlle Vittone and Jean-Marc Chassery. Coexistence of Tricubes in Digital
Naive Plane. In DGCI, 7th International Workshop, volume 1347 of LNCS,
pages 99–110, 1997.

[VC99] Joëlle Vittone and Jean-Marc Chassery. (n,m)-cubes and Farey Nets for
Naive Planes Understanding. In DGCI, 8th International Conference, volume
1568 of LNCS, pages 76–87, 1999.

[VC00] Joëlle Vittone and Jean-Marc Chassery. Recognition of Digital Naive Planes
and Polyhedrization. In DGCI, 9th International Conference, volume 1953
of LNCS, pages 296–307. IAPR, 2000.

[Vui99] Laurent Vuillon. Local Configurations in a Discrete Plane. Bull. Belgian
Math. Soc., 6:625–636, 1999.

References

[AAS97] Éric Andres, Raj Acharya, and Claudio Sibata. The Discrete Analytical
Hyperplanes. Graph. Models Image Process., 59(5):302–309, 1997.

Complexity Analysis for Digital Hyperplane
Recognition in Arbitrary Fixed Dimension

Valentin E. Brimkov1 and Stefan S. Dantchev2

1 Fairmont State University, 1201 Locust Avenue, Fairmont,
West Virginia 26554-2470, USA
vbrimkov@fairmontstate.edu

2 University of Durham, Science Labs,
South Road, Durham DH1 3LE, England

s.s.dantchev@durham.ac.uk.

Abstract. We consider the following problem. Given a set of points
M = {p1, p2, . . . , pm} ⊆ R

n, decide whether M is a portion of a digi-
tal hyperplane and, if so, determine its analytical representation. In our
setting p1, p2, . . . , pm may be arbitrary points (possibly, with rational
and/or irrational coefficients) and the dimension n may be any arbitrary
fixed integer. We provide an algorithm that solves this digital hyperplane
recognition problem by reducing it to an integer linear programming
problem of fixed dimension within an algebraic model of computation.
The algorithm performs O (m log D) arithmetic operations, where D is
a bound on the norm of the domain elements.

Keywords: Digital hyperplane, digital plane recognition, integer pro-
gramming.

1 Introduction

Digital plane segment (DPS) recognition is a basic problem in image analysis, at-
tracting a lot of interest in recent years. Several algorithms for this problem have
been proposed. (See the recent survey [5] by Brimkov, Coeurjolly, and Klette).
[24] suggests an algorithm based on convex hull separability. Algorithm involving
plane characterization by evenness in grid adjacency models is discussed in [26].
[9] proposes an approach based on tests for existence of lower and upper support-
ing (“oblique”) planes for the given set of points. [14] suggests recognition by
least-square optimization. See also [27] for further contributions. A number of al-
gorithms exploit the idea to reduce the problem to a relevant linear program and
solve it by employing existing methods from linear programming. [10] suggests a
method by converting DPS to a system of m2 linear inequalities, where m is the
cardinality of the given set of points. The system is solved by the Fourier elimina-
tion algorithm. One can also apply Fukuda’s CDD algorithm for solving systems
of linear inequalities by successive intersection of half-spaces defined by the in-
equalities. An efficient incremental algorithm based on a similar approach is pro-
posed in [15]. In [8] Buzer presents an incremental linear time algorithm based on

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 287–298, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 V.E. Brimkov and S.S. Dantchev

solving a linear program by appropriate modification of Megiddo’s algorithm [18].
Most of the above-mentioned algorithms perform well in practice. However, with
a few exceptions (e.g., [8]), rigorous time complexity analysis is not available.

In the present theoretical work we consider somewhat more general version of
the DPS recognition problem: Given a set of points M = {p1, p2, . . . , pm} ⊆ Rn,
decide whether M is a portion of a digital hyperplane and, if so, determine that
analytical digital hyperplane. Here p1, p2, . . . , pm may be arbitrary points, pos-
sibly with integer and/or irrational coefficients. Such kind of data may result,
e.g., from certain computational processes. The considerations take place in an
arbitrary dimension n, provided that n is fixed (i.e., bounded by an arbitrary
constant). We provide an algorithm that solves the above problem by reduc-
ing it to an integer linear programming problem of a fixed dimension within
an algebraic model of computation. This last problem is solved by a (theoreti-
cally) efficient algorithm based on a number of well-known results from theory
of algorithms and complexity (some of them earlier authors’ contributions). The
algorithm works on input data that are arbitrary real numbers. In particular,
it applies to problems with integer or rational data. Our algorithm solves the
problem with O (m logD) arithmetic operations, where D is a bound on the
norm of the domain elements. The obtained theoretical results are somewhat in
the spirit of Buzer’s results [8] (first reported at DGCI’02).

To our knowledge of the available literature, this is the first integer program-
ming based algorithm for a DPS recognition problem. The reason for absence of
other similar methods is that ILP was believed to be inapplicable to DPS recog-
nition due to its NP-hardness (see, e.g., related discussion in [8]). The present
paper illustrates that from a theoretical point of view, for fixed dimensions, an
integer linear program is almost as easy to solve as a linear program. Moreover,
in some cases the proposed integer programming approach may have certain ad-
vantages over a linear programming approach, especially in avoiding very large
integers that may result from a LP formulation. It also seems to us that our
algorithm is the first one for DPS in higher dimensions, whose description is ac-
companied with rigorous complexity analysis. Another purpose of this work is to
demonstrate the wealth of applying knowledge and results from other branches
of theoretical computer science (such as theory of algorithms and complexity)
to problems of digital geometry.

The paper is organized as follows. In Section 2 we recall some basic defini-
tions from the theory of arithmetic planes and obtain the integer linear program
corresponding to the considered problem. In Section 3 we present an integer
programming algorithm that solves any integer program of the considered type.
We conclude with some remarks in Section 4.

2 Feasible Digital Plane Recognition

In order to make our further considerations clearer, we first consider the 2D ver-
sion of the DPS recognition problem, that is, a digital line segment recognition.

Complexity Analysis for Digital Hyperplane Recognition 289

(b)(a)

p
1

p
3

p
4

p
5

p
6

p
7

p
8

p
2

Fig. 1. Illustrations to the notions of feasibility. a) Feasible region related to a digital
line. b) Feasible parts of pixels forming the feasible set of a digital line

Here we are given a set M = {p1, p2, . . . , pm} of integer points in the plane, and
we look for a digital line that contains these points.

Several equivalent definitions of a digital line are known (see the survey by
Rosenfeld and Klette [22].) Here we conform to the analytical definition proposed
by Reveillès [21].

A (naive) digital line1 is a set of pixels L(a1, a2, b,max(|a1|, |a2|)) = {(x1, x2) ∈
Z2|0 ≤ a1x1 +a2x2 + b+)max(|a1|, |a2|)/2* < max(|a1|, |a2|)}, where a1, a2, μ ∈
Z. L(a1, a2, b,max(|a1|, |a2|)) can be considered as a discretization of a straight
line with equation ax1 + ax2 + b = 0. It involves all pixels (unit squares cen-
tered at integer points of the plane) whose centers fall in between two par-
allel boundary straight lines a1x1 + a2x2 + b +)max(|a1|, |a2|)/2* = 0 and
a1x1 + a2x2 + b +)max(|a1|, |a2|)/2* = max(|a1|, |a2|).2 We will call the strip
F (a1, a2, b) = {(x1, x2) ∈ R2|0 ≤ a1x1 + a2x2 + b +)max(|a1|, |a2|)/2* <
max(|a1|, |a2|)} a feasible region of R2 relative to L(a1, a2, b,max(|a1|, |a2|)). See
Fig. 1a.

Now consider a pixel p ∈ L(a1, a2, b,max(|a1|, |a2|)). As Fig. 1b suggests, a
part of p is inside the feasible region F (a1, a2, b), while the rest of it is outside
F (a1, a2, b). The former will be called the feasible part of p relative to the line
L(a1, a2, b,max(|a1|, |a2|)) and denoted Fa1,a2,b(p). The points of Fa1,a2,b(p) will
be referred to as feasible points of p. Finally, the union of all feasible parts of all
pixels in a segment of a digital line L will be called the feasible set of the digital
line segment and denoted FL(a1, a2, b) (see Fig. 1b).

All above definitions and notions trivially extend to arbitrary dimension n.
Thus a (naive) digital hyperplane is a set of n-cells3

1 also called “arithmetic line.”
2 Because of the strict right inequality in the definition, pixels’ centers cannot lie on

the second line.
3 n-dimensional counterparts of pixels.

290 V.E. Brimkov and S.S. Dantchev

H(a1, a2, . . . , an, b, |a|max)

=
{

(x1, x2, . . . , xn) ∈ Zn|0 ≤ a1x1 + a2x2 + . . . + anxn + b +
⌊
|a|max

2

⌋
< |a|max

}
,

where |a|max = max(|a1|, |a2|, . . . , |an|). (See [1, 2] for basic definitions and facts
and [4] for further studies.) Its feasible region is

F (a1, a2, . . . , an, b)

=
{

(x1, x2, . . . , xn) ∈ Rn|0 ≤ a1x1 + a2x2 + . . . + anxn + b +
⌊
|a|max

2

⌋
< |a|max

}
.

A feasible part Fa1,a2,...,an,b(p) of an n-cell p and a feasible setFH(a1, a2, . . . , an, b)
of a digital hyperplane H are defined analogously to the 2D case.

With this preparation, we are able to state the following generalization of a
digital hyperplane segment recognition problem, which we call the feasible digital
hyperplane segment recognition problem and abbreviate FeasDHS.

FeasDHS Recognition:

Given a set of points M = {p1, p2, . . . , pm} ⊆ Rn, decide whether M is included
in the feasible part FH(a1, a2, . . . , an, b) of some digital hyperplane H(a1, a2, . . . ,
an, b, |a|max), and, if so, determine its coefficients a1, a2, . . . , an, b.

Note that in this setting more than one point pi may belong to the same
pixel of the discrete space. Moreover, a point pi may have irrational coordinates,
such as the point p2 in Fig. 1b.

We now obtain formulation of FeasDHS in terms of an integer programming
program.

It is not hard to realize that an element pi of M is a feasible point of some n-
cell v (i.e., pi ∈ Fa1,a2,...,an,b(v)) if and only if there exist integers a1, a2, . . . , an,
and b, such that the following conditions are met:

1. 0 ≤ a1p
i
1 + a2p

i
2 + . . . + anp

i
n + b +

⌊
|a|max

2

⌋
< |a|max, and

2. 0 ≤ a1
⌈
pi
1
⌋

+ a2
⌈
pi
2
⌋

+ . . . + an

⌈
pi

n

⌋
+ b +

⌊
|a|max

2

⌋
< |a|max.

('.* denotes the operator “the closest integer” to a given real number. If x
is a “half-integer”, we set 'x* = 'x(, e.g., '3.5(= 4.)

The first condition causes pi to belong to the feasible region relative to a digital
hyperplane with coefficients a1, a2, . . . , an and b, while the second one ensures
that pi belongs to an n-cell from the same digital hyperplane. Note that both
conditions are essential: If Condition 1 is missing, then pi may be outside the
feasible region. If Condition 2 does not hold, then pi may not belong to all n-cells
from the digital hyperplane with coefficients a1, a2, . . . , an, b.

When i runs from 1 to m, we get an integer linear problem with n + 1
unknowns a1, a2, . . . , an, b and 4m linear constraints.

As already mentioned, we will deal with the case when the dimension n is an
arbitrary fixed integer. We will also suppose that the coefficients a1, a2, . . . , an, b

Complexity Analysis for Digital Hyperplane Recognition 291

we look for are bounded in size, i.e. |a1| ≤ d1, |a2| ≤ d2, . . . , |an| ≤ dn, |b| ≤ dn+1,
as the bounds d1, d2, . . . , dn+1 are a part of the problem input. In the next sec-
tion we will see that this condition is dictated by the very nature of the problem,
especially by the fact that some of the coefficients may be irrational numbers.
From a practical point of view, this condition does not restrict the generality,
as we can always suppose that the absolute value of the largest coefficient is
bounded by, e.g., the largest positive integer that we may use in practice. More-
over, by assuming bounds on the plane coefficients one can avoid occurrance of
very large numbers in the problem solution.

3 Algorithm for Integer Programming of Fixed
Dimension

In this section we describe an efficient algorithm for integer linear programming
programs as those corresponding to FeasDHS. Consider the following integer
linear program:4

(ILP) Given a matrix A ∈ Rm×n and vectors b ∈ Rm, d ∈ Rn,
find x ∈ Zn such that Ax ≤ b,where 0 ≤ x ≤ d.

To simplify our further considerations, we have assumed that the coordinates
of a domain element x = (x1, . . . , xn) satisfy the conditions 0 ≤ xi ≤ di rather
than |xi| ≤ di, 1 ≤ i ≤ n. Clearly, a problem with constraints of the first type
is equivalent to one with constraints of the second type up to a change of the
variables.

The input entries are arbitrary real numbers and the adopted model of com-
putation is an algebraic computation model. This kind of model has been
traditionally used in scientific computing, algebraic complexity, computational
geometry, and (although not explicitly) numerical analysis (see, e.g., [19, 20, 25]).
In that model, the assumption is that all the real numbers in the input have
unit size, and the basic algebraic operations +,−, ∗, / and the relation ≤ are
executable at unit cost. Thus the algebraic complexity of a computation on a
problem instance is the number of operations and branchings performed to solve
the instance.

At this point it is important to mention that the requirement in the ILP
formulation for bounded domain (i.e., 0 ≤ x ≤ d) is essential and predetermined
by the intrinsic nature of the problem, namely by the fact that the coefficients
may be irrational numbers. In such a case, a problem with unbounded domain
may be, in general, undecidable, as shown in [6].

In the rest of this paper we present an algorithm for ILP when the value of
n is fixed. The algorithm consists of two stages: a reduction of the given real

4 In the feasDHS formulation we have certain rounding operations. It is well-known [3]
that rounding of a real number x can be performed in log |x| basic arithmetic opera-
tions. Thus the coefficients of the second inequality in the feasDHS definition can be
computed in O(m log |x|max) time overall, where |x|max = max(|x1|, |x2|, . . . , |xn|).

292 V.E. Brimkov and S.S. Dantchev

input to an integer input determining the same admissible set, followed by an
application of Lenstra’s algorithm [16]. The first stage involves simultaneous Dio-
phantine approximation techniques, while the second employs two well-known
algorithms: the Lovász’ basis reduction algorithm [17] and the Hermite normal
form algorithm (see, e.g., [13]).

3.1 Subroutines to the Main Algorithm

Lovász Lattice Basis Reduction Algorithm. The input to Lovász algorithm
consists of linearly independent vectors b1, b2, . . . bn ∈ Qn, considered as a basis
for a lattice L. The algorithm transforms them iteratively. At the end, they form
a basis for L which is reduced in the Lovász sense. First we recall some definitions,
then describe the Lovász lattice basis reduction algorithm itself, following [11].

With a basis b1, b2, . . . bn, we associate the orthogonal system b∗
1, b

∗
2, . . . b

∗
n,

where b∗
i is the component of bi which is orthogonal to b1, b2, . . . bi−1. The vectors

b∗
1, b

∗
2, . . . b

∗
n can be computed by Gram-Schmidt orthogonalization:

b∗
1 = b1, b∗

i = bi −
∑i−1

j=1 μi,jb
∗
j , 2 ≤ i ≤ n, μi,j =

〈
bi, b

∗
j

〉/∥∥b∗
j

∥∥2 .

The basis b1, b2, . . . bn is size-reduced if all |μi,j | ≤ 1
2 . Given an arbitrary

basis b1, b2, . . . bn, we can transform it into a size-reduced basis with the same
Gram-Schmidt orthogonal system, as follows:
For every i from 2 to n; for every j from i − 1 to 1;
Set bi := bi − 'μi,j* bj and update μi,k for 1 ≤ k ≤ i − 1, by setting μi,k =
μi,k − 'μi,j*μj,k.

We outline a variant of the Lovász lattice basis reduction algorithm next.

1. Initiation. Compute the Gram-Schmidt quantities μi,j and b∗
i for 1 ≤ j <

i ≤ n. Size-reduce the basis.
2. Termination condition. If ‖b∗

i ‖
2 ≤ 2

∥∥b∗
i+1

∥∥2 for 1 ≤ i ≤ n − 1, then stop.
3. Exchange step. Choose the smallest i such that ‖b∗

i ‖
2
> 2

∥∥b∗
i+1

∥∥2. Exchange
bi and bi+1. Update the Gram-Schmidt quantities. Size-reduce the basis. Go
to 2.

Gram-Schmidt quantities in Step 3 are updated as follows:

‖b∗
i ‖

2
new =

∥∥b∗
i+1

∥∥2 + μ2
i+1,i ‖b∗

i ‖
2,

∥∥b∗
i+1

∥∥2
new

= ‖b∗
i ‖

2 ∥∥b∗
i+1

∥∥2
/

‖b∗
i ‖

2
new

μnew
i+1,i = μi+1,i ‖b∗

i ‖
2
/

‖b∗
i ‖

2
new(

μnew
i,j

μnew
i+1,j

)
=
(
μi+1,j

μi,j

)
for 1 ≤ j ≤ i − 1(

μnew
j,i

μnew
j,i+1

)
=
(

1 μnew
i+1,i

0 1

)(
0 1
1 −μi+1,i

)(
μj,i

μj,i+1

)
for i + 2 ≤ j ≤ n.

The other ‖b∗
i ‖

2’s and μi,j ’s do not change.
After termination of the above algorithm, we have a size-reduced basis for

which ‖b∗
i ‖

2 ≤ 2
∥∥b∗

i+1

∥∥2, 1 ≤ i ≤ n − 1. We call such a basis reduced in the
Lovász sense. The following lemma was proved in [7].

Complexity Analysis for Digital Hyperplane Recognition 293

Lemma 1. The algebraic complexity of Lovász’ basis reduction algorithm ap-
plied to an n× n rational matrix with entries of size O(S), is O(Sn5 log n), and
the bit-size of the entries in the reduced basis is O(Sn3).

Hermite Normal Form Algorithm. In the algorithm’s description we follow
[23]. The input for the algorithm is an m × n (m ≤ n) integer matrix A of full
rank. The algorithm uses a matrix of the form

A′ =

⎛⎜⎝A

∣∣∣∣∣∣∣
M

. . .
M

⎞⎟⎠ ,

where M is the absolute value of some nonsingular m × m minor of A. A′ has
the same Hermite normal form as A. The algorithm consists of the following five
steps:

1. Cause all the entries of the matrix A to fall into the interval [0,M), by adding
to the first n columns of A′ proper integer multiples of the last n columns;

2. For k from 1 to m do 3-4;
3. If there are i �= j, k ≤ i, j ≤ n + k, such that a′

k,i ≥ a′
k,j > 0, then subtract

from the ith column the jth one multiplied by
⌊

a′
k,i

a′
k,j

⌋
. Then reduce the ith

column modulo M . Go to 3;
4. Exchange the kth column and the only column with a′

k,i > 0;
5. For every i from 2 to n; for every j from 1 to i− 1, add an integer multiple

of the ith column to the jth one, to get a′
i,i > a′

i,j ≥ 0.

We have the following lemma [7].

Lemma 2. Let A be an m×n (m ≤ n) integer matrix of full rank with entries of
size O(S). Then the algebraic complexity of the Hermite normal form algorithm
that reduces A into its Hermite normal form, is O(m2n(logm + S)), and the
bit-size of all resulting integers is O(Smn).

Since the above lemma admits a short proof, we sketch it next in order to provide
the reader with an idea how statements of this kind can be demonstrated.

We introduce the function

F
(
a′

k,k, a
′
k,k+1, . . . a

′
k,n+k

)
:=

∏
k ≤ i ≤ n + k

a′
k,i

for a′
k,i > 0. After one iteration of Step 3, we have

Fnew/F = (a′
k,i −

⌊
a′

k,i/a
′
k,j

⌋
a′

k,j)/a
′
k,i,

which implies both Fnew/F < 1/2 and Fnew/F < a′
k,j/a

′
k,i. It is not hard to see

that one iteration of Step 3 can be performed in time O
(
m log(a′

k,i/a
′
k,j)

)
=

294 V.E. Brimkov and S.S. Dantchev

O (m log(F/Fnew)). So, Step 3 takes O
(
m log Fstart

Fend

)
time. We have that Fstart <

Mn+1 , Fend ≥ 1. Moreover, we have the following simple fact: if a is a non-
zero rational number of bit-size at most S, then 1

/
2S ≤ |a| ≤ 2S . This last fact

implies the following property of matrices: given a non-singular n×n rational ma-
trix B whose entries are of bit-size at most S, then 1

/
2n2S ≤ |det (B)| ≤ n!2nS .

From here we obtain M = O
(
m!2mS

)
. Hence, the overall running time of Step

3 is O (nm (logm + S)). Then, the complexity of the Hermite normal form al-
gorithm is O

(
nm2 (logm + S)

)
. Since all the resulting integers are smaller than

M , their bit-size is O (Smn).

3.2 Simultaneous Diophantine Approximation

Our algorithm employs in one of its steps the well-known algorithm for finding a
simultaneous Diophantine approximation to a given rational vector. Specifically,
we will use the following lemma.

Lemma 3. (see, e.g., [23–Corollary 6.4c]) There exists a polynomial algorithm
which, given a vector a ∈ Qn and a rational number ε, 0 < ε < 1, finds an integral
vector p and an integer q such that ||a − 1

qp|| < ε/q, and 1 ≤ q ≤ 2n(n+1)/4ε−n.

We will also need an algorithm that reduces the constraints with real coeffi-
cients to constraints with integer coefficients, determining the same admissible
set. The first phase of this reduction is a substitution of a given real vector with
an appropriate rational vector, justified by the following lemma.

Lemma 4. Given a vector α ∈ Rn with |αj | ≤ 1, j = 1, 2, . . . , n, and D ∈ Z+,
there exists an O(n4 log n(n + logD)) algorithm that finds p ∈ Zn and q ∈ Z+
such that |αj − pj/q| < 1/(qD), j = 1, 2, . . . , n, and 1 ≤ q ≤ '2n(n+5)/4Dn(.

The required p ∈ Zn and q ∈ Z+ can be found as follows.

Diophantine Approximation to a Real Vector

1. For each αj , 1 ≤ j ≤ n, find the closest rational fraction aj with denominator
G = '2n(n+5)/4Dn+1(.

2. Apply the algorithm of Lemma 3 with input a = (a1, . . . , an) ∈ Qn and
ε = 1/(2D). �

By Lemma 3, the output is a vector p ∈ Zn and an integer q ∈ Z+ with

||a − (1/q)p|| < 1/(2qD) and 1 ≤ q ≤ '2n(n+5)/4Dn(.

Clearly, |αj − aj | ≤ 1/(2G). Then we have∣∣∣∣αj − pj

q

∣∣∣∣ ≤ |αj − aj | +
∣∣∣∣aj − 1

q
pj

∣∣∣∣
≤ |αj − aj | +

∥∥∥∥a − 1
q
p

∥∥∥∥ <
1

2G
+

1
2qD

Complexity Analysis for Digital Hyperplane Recognition 295

≤ 1
2.'2n(n+5)/4Dn(.D +

1
2qD

≤ 1
qD

,

i.e., the obtained vector p and integer q are as desired.
Consider first Step 1. For a given real number αj , the closest rational fraction

with denominator G = '2n(n+5)/4Dn+1(can be found in time O(logG) = O(n2+
n logD). Thus the overall time complexity of Step 1 is O(n3 + n2 logD).

Step 2 involves the simultaneous Diophantine approximation algorithm ap-
plied to the particular class of inputs a ∈ Qn, ε = 1/(2D) obtained in Step 1.
As a matter of fact, this is a specialization of the Lovász basis reduction algo-
rithm, applied to a certain matrix. It has been proved in [6–Lemma 4.4] that the
number of iterations performed in this step is O(n4 log n(n + logD)). Then the
overall time complexity of the algorithm of Lemma 4 is O(n4 log n(n + logD)),
as well.

The algorithm of Lemma 4 can be used to substitute any real constraint
ax ≤ b with an integer one, preserving the same admissible integer points x with
0 ≤ x ≤ d, d ∈ Rn. More precisely, we have the following lemma.

Lemma 5. Let T = {x ∈ Zn : ax ≤ b;0 ≤ x ≤ d}, where a ∈ Rn, b ∈ R,
d ∈ Zn

+. Then there exists an algorithm which finds a vector r ∈ Zn and a
number r0 ∈ Z such that T = {x ∈ Zn : rx ≤ r0;0 ≤ x ≤ d}. The algorithm
involves at most n applications of the algorithm from Lemma 4, with D = ||d||.

Proof of the above fact is available in [6–Lemma 5.1]. Now we are able to
complete the algebraic complexity analysis of integer programming of fixed di-
mension, which we do in the next section.

3.3 Algorithm for ILP

In this section we use the results from the previous section to obtain an O(m logD)
algorithm for ILP, where D = ||d||, as defined in Lemma 5.

As already mentioned, the algorithm consists of two stages. In the first stage,
it reduces the constraints with real coefficients to constraints with integer coef-
ficients which determine the same admissible set of integer points. In the second
stage, the Lenstra’s algorithm [16] is applied to the integer data problem ob-
tained as an output of the first stage.

From Lemmas 4 and 5, we obtain that the overall time complexity of the
reduction stage is O(mn5 log n(n+logD)). Furthermore, the bit-size of the gen-
erated integers is O(n2(n+logD)). Therefore, the overall bit-size of the reduced
problem is O(mn3(n + logD)).

We now complete the complexity analysis of the second stage of the algo-
rithm. That stage is an application of the Lenstra’s [16] algorithm to the integer
linear problem obtained as output of the first stage. A recursive step of Lenstra’s
algorithm reduces an n-dimensional problem to a set of subproblems of dimen-
sion n − 1, whose number is exponential but depending only on n. The basic
algorithms used in this reduction are the Lovász basis reduction algorithm and
the Hermite normal form algorithm. In addition, in order to compute a homoth-
etic approximation to the underlying polyhedron with constant homothety ratio,

296 V.E. Brimkov and S.S. Dantchev

a number of linear programming problems of dimension (m + 2n) × n have to
be solved.

The Lovász basis reduction algorithm and the Hermite normal form algorithm
are both applied to matrices of dimension depending only on n. Moreover, all
entries of these matrices are of bit-size O(logD), as the value of n is fixed. Then,
by Lemmas 1 and 2, the complexity of the two algorithms as well as the bit-size
of the integers they generate, are bounded by O(logD).

During the execution of the Lenstra’s algorithm, there are O(logD) linear
programming problems to be solved. Each of them can be solved in time O(m+n)
(i.e., linear in m) using the well-known Megiddo’s algorithm [18]. Hence, if n is
fixed, the overall complexity of this stage is O(m logD). This completes the proof
of the following theorem.

Theorem 1. There is an O(m logD) algorithm for ILP with a fixed number of
variables, where D = ||d||.

3.4 Theoretical Versus Practical Efficiency

The proposed algorithm solves the considered problem ILP within an algebraic
computation model by performing O(m logD) = O(m log ||d||) arithmetic oper-
ations for any fixed dimension n. Usually, algorithms of such kind of complexity
are considered as theoretically efficient. However, in order to make a reason-
able foresight about the practical efficiency of the computation, one also has to
evaluate the implicit constant hidden in the big-O notation.

Specifically, in order to solve an ILP (and thus the original hyperplane recog-
nition problem) the algorithm uses as subroutines a number of well-known algo-
rithms for some basic combinatorial problems. Keeping in mind the algorithm
description, it is not hard to realize that the overall number of these problems
is exponential in n. In practice, however, it might not be a problem for two
reasons. First, n is a constant (usually a small one) and, second, the average-
case time complexity of ILP is believed to be much lower than the worst-case
time complexity. Moreover, the Lovász lattice basis reduction algorithm and the
Hermite normal form algorithm are polynomial in n and therefore very efficient
even for relatively large dimensions. The only exception is the Megiddo’s linear
programming algorithm, whose time complexity involves an implicit constant
factor of the order Ω(2n2

). For relatively small dimensions Megiddo’s algorithm
is known to perform well in practice. For moderately large dimensions one can
use instead of Megiddo’s algorithm some recent more practical algorithms that
have better theoretical running time,5 are easier to implement, and perform well
in practice.

For large dimensions n, however, the algorithm is clearly inefficient, like all
other algorithms involving the Megiddo’s method (in particular, Buzer’s digital
plane recognition algorithm mentioned above). Nevertheless, results of this kind

5 For example, [12] provides a randomized linear programming algorithm whose run-
ning time involves an implicit constant factor that is subexponential in n.

Complexity Analysis for Digital Hyperplane Recognition 297

provide useful insight on certain limitations that an efficient computation may
feature.

The ultimate test for our algorithm is, of course, an efficient implementation
that would allow us to run it on real data and compare it with the existing
algorithms. We see this as an important direction for future research.

4 Concluding Remarks

We have presented an O(m logD) algorithm for solving the digital hyperplane
segment recognition problem in arbitrary fixed dimension, where D = ||d|| is a
bound on the norm of the domain elements (possible hyperplane coefficients).
The input may be a set of points with arbitrary real coordinates. The algorithm
also applies to classical digital plane recognition where the given points have
integer coefficients.

The algorithm works on an integer linear program formulation and solves it
theoretically efficiently. We believe that this result, together with some other
theoretical results, will contribute to the better understanding structural, algo-
rithmic, and complexity issues of digital plane recognition.

Acknowledgements

The authors thank the two anonymous referees for their useful remarks and
suggestions.

References

1. Andres, E., Modélisation Analytique Discrète d’Objets Géométriques, Thèse de
habilitation à diriger des recherches, Universit‘’e de Poitiers, Poitiers, France, 2001

2. Andres, E., R. Acharya, C. Sibata, Discrete analytical hyperplanes, Graphical Mod-
els Image Processing 59, 302–309 (1997)

3. Blum, L., M. Shub, S. Smale, On a Theory of Computation and Complexity
over the Real Numbers: NP-Completeness, Recursive Functions and Universal Ma-
chines, Bull. Amer. Math. Soc. (NS) 21, 1–46 (1989)

4. Brimkov, V.E., E. Andres, R.P. Barneva, Object Discretizations in Higher Dimen-
sions, Pattern Recognition Letters, 23, 623–636 (2002)

5. Brimkov, V.E., D. Coeurjolly, R. Klette, Digital Planarity - A Review, CITR-TR
142, 2004

6. Brimkov, V.E., S.S. Danchev, Real Data – Integer Solution Problems within the
Blum-Shub-Smale Computational Model, J. of Complexity 13, 279–300 (1997)

7. Brimkov, V.E., S.S. Dantchev, On the Complexity of Integer Programming in
the Blum-Shub-Smale Computational Model, In: Theoretical Computer Science.
Exploring New Frontiers of Theoretical Informatics, van Leeuwen, J., O. Watanabe,
M. Hagiya, P.D. Mosses, T. Ito (Eds.), LNCS-1872, 286-300 (2000)

8. Buzer, L., A Linear Incremental Algorithm for Naive and Standard Digital Dines
and Planes Recognition, Graphical Models 65 61–76 (2003)

298 V.E. Brimkov and S.S. Dantchev

9. Debled-Rennesson, I., J.-P. Reveillès, A New Approach to Digital Planes, Vision
Geometry III, SPIE-2356, 12–21 (1994)

10. Françon, J., J.M. Schramm, M. Tajine, Recognizing Arithmetic Straight Lines and
Planes, 6th Int. Conf. Discrete Geometry for Computer Imagery, Springer, LNCS-
1176, 141–150 (1996)

11. Hastad, J., B. Just, J.C. Lagarias, C.P. Schnoor, Polynomial Time Algorithms for
Finding Integer Relations among Real Numbers, SIAM J. Comput. 18, 859–881
(1989)

12. Kalai, G., A Subexponential Randomized Simplex Algorithm, 24th Annual ACM
Symposium on the Theory of Computation, ACM Press, 475-482 (1992)

13. Kannan, R., A. Bachem, Polynomial Algorithms for Computing the Smith and
Hermite Normal Forms of an Integer Matrix, SIAM J. Comput. 8, 499–507 (1979)

14. Klette, R., I. Stojmenović, J. Žunić, A Parametrization of Digital Planes by Least
Square Fits and Generalizations, Graphical Models Image Processing 58, 295–300
(1996)

15. Klette, R., H.-J. Sun, Digital Planar Segment Based Polyhedrization for Surface
Area Estimation, In: Arcelli, C., L.P. Cordella, and G. Sanniti di Baja, editors,
Visual Form 2001, Springer, Berlin, pages 356–366 (2001)

16. Lenstra, H.W., Jr., Integer Programming with a Fixed Number of Variables, Math.
Oper. Res. 8, 538–548 (1983)

17. Lenstra, A.K., H.W. Lenstra, Jr., L. Lovász, Factoring Polynomials with Rational
Coefficients, Math. Ann. 261, 515–534 (1982)

18. Megiddo, N., Linear Programming in Linear Time when the Dimension is Fixed,
J. of ACM 31 (1), 114–127 (1984)

19. Novak, E., The Real Number Model in Numerical Analysis, J. of Complexity 11,
57–73 (1994)

20. Preparata, F.P., M.I. Shamos, Computational Geometry, Springer-Verlag, Berlin
Heidelberg New York, 1985

21. Reveillès, J.-P., Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique,
Thèse d’état, Univ. Louis Pasteur, Strasbourg, 1991

22. Rosenfeld, A., R. Klette, Digital Straightness, In: Electronic Notes in Theoretical
Computer Science 46 (2001)

23. Schrijver, A., Theory of Linear and Integer Programming, Wiley, Chichester New
York Brisbane Toronto Singapore, 1986

24. Stojmenović, I., R. Tosić, Digitization Schemes and the Recognition of Digital
Straight Lines, Hyperplanes and Flats in Arbitrary Dimensions, Vision Geometry,
Contemporary Mathematics Series, 119 197–212 (1991)

25. Strassen, V., Algebraic Complexity Theory, In: van Leeuwen, J. (Ed.), Handbook
of Theoretical Computer Science, Vol. A, Elsevier, Amsterdam, 633–672 (1990)

26. Veelaert, P., Digital Planarity of Rectangular Surface Segments, IEEE Pattern
Analysis and Machine Int, 16, 647–652 (1994)

27. Vittone, J., J.-M. Chassery, Recognition of Digital Naive Planes and Polyhedriza-
tion, 9th Int. Conf. Discrete Geometry for Computer Imagery, Springer, LNCS-
1953, 296–307 (2000)

An Elementary Algorithm for Digital Line
Recognition in the General Case

Lilian Buzer

A2SI Laboratory, ESIEE, 2 bd Blaise Pascal,
Cité Descartes, - BP 99, 93162 Noisy-Le-Grand Cedex, France

Buzerl@esiee.fr
Institut Gaspard Monge, Unité Mixte CNRS-ESIEE, UMR 8049

Abstract. This paper is concerned with the naive and, more generally,
α-thick digital line recognition problem. Previous incremental algorithms
deal with the 8-connected case [DR95] or with sophisticated machinery
coming from Linear Programming [Buz03]. We present the first elemen-
tary method [Buz02] that works with any set of points (not necessarily
8-connected) and we propose a linear time algorithm under some restric-
tions (which were implicitly assumed in [DR95]). This paper deals with
implementation details giving pseudo-code of our method. We insist on
linking the recognition problem to the intrinsic properties of convex hulls.

Keywords: Digital line, incremental, recognition, convex hull, thickness,
implementation.

1 Introduction

When one processes digital images, one also sometimes wants to know how to
recognize basic geometric entities. In this way appears the recognition problem
of digital lines of variable thickness (see Fig. 1). In this paper, we set up the
definition of α-thick digital line which allows to represent a wide variety of
digital line segments. We show that the knowledge of some basic information
on the convex hull of a set of points S (thickness or critical supporting lines)
is sufficient to determine if S is a subset of an α-thick digital line segment.
Then, we adapt this remark in order to create an elementary algorithm for
the recognition problem. We exhibit its optimal complexity relatively to many
different configurations (static, incremental, dynamic). Thus, we propose a short
implementation of the linear incremental version which works when points are
inserted in a given direction. This new method and the previous one based
on Megiddo algorithm [Buz03] are able to incrementaly process α-thick digital
line with non-connected pixels. In [Buz03] we only deal with naive digital line
(where α = 1), but this previous method is able to recognize α-thick digital line
by replacing the thickness of 1 by α. Conversely, the new approach can operate
naive digital line when we set α equal to 1. If the two algorithms recognize the
same objects using the same thickness notion, the way they work is completely

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 299–310, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

300 L. Buzer

different. The Megiddo approach does not explicitly compute the new thickness
value when a point is inserted. We can only know if the current thickness is
below a given threshold. With the new method, we are able to determine the
current thickness value at any moment and to add other criteria that can be
estimated from the thickness : density of pixels or curvature. This entails a higher
complexity O(nlogn) but in most cases we will work in configurations that allow
to use a linear and elementary version of this new approach. Throughout this
paper, we will denote by Ox and Oy the axes of the Cartesian coordinate system,
by ex and ey the associated units vectors and by (x, y) the Cartesian components
of points.

2 α-Thick Digital Line

We hereafter present α-thick digital line. Its seminal definition was given by
Reveillès in [Rev91]. Any digital line D in Z2 is described by a set of parameters:
the normal vector N = (a, b) in Z2\{0} with gcd(a, b) equal to 1, the inferior
bound γ in Z and the arithmetic thickness w in Z. A point (x, y) of a digital line
with parameters (a, b), γ, w verifies the following diophantine inequality:

γ ≤ a.x + b.y < γ + w (1)

If we choose the arithmetic thickness to be equal to the infinity norm of the
normal vector: ||N ||∞ = sup{|a|, |b|}, we obtain an 8-connected object called a
naive digital line (see Fig. 1). We extend this definition to the α-thick digital line
where α corresponds to a thickness ratio whose reference (α = 1) is the naive
digital line. A point (x, y) belongs to such a line if it verifies:

γ ≤ a.x + b.y < γ + α. sup{|a|, |b|} (2)

We can consider three different subclasses of digital lines depending on the
components of the normal vector N = (a, b). When |a| = |b| = 1, the digital line
has a slope of ±45◦. When |a| < |b| (resp. |b| < |a|), the resulting slope relative
to the Ox axis (resp. Oy axis) is always comprised between −45◦ and +45◦ (see
Fig. 2).

ey

ex
ex

(a) a naive digital line (c) a given set of points P(b) 2-thick digital line covers P

Normal vector (-2,5)ey
ey

Fig. 1. The recognition problem using different thickness for the digital lines

An Elementary Algorithm for Digital Line Recognition 301

3 Thickness Criterion

3.1 Introducing the Notion of Thickness

The definition of a digital line is intrinsically algebraic. We use an equivalent
characterization which is more linked to the field of Euclidian geometry:

Lemma 1. A set of points is a piece of an α-thick digital line if and only if
these points can be covered by a strip of rational slope and of horizontal or
vertical thickness strictly inferior to α.

|a| > |b||a| = |b| |a| < |b|

Fig. 2. Different types of digital line
orientations

ey

vertical
thickness

height(β)

β ex

Fig. 3. Height and vertical thickness of
a convex hull

3.2 Thickness and Convex Hull

In this subsection, we show that the notion of thickness (more precisely the
thickness of the convex hull of the input points) plays an important role in the
recognition problem.

Definition 1. The height at abscissa β of a convex set C is defined to be the
length of the segment resulting from the intersection of C with the vertical line
x = β. We call the vertical thickness of C the maximum reached by height(x)
(see Fig. 3). The width and the horizontal thickness are symmetrically defined.

Lemma 2. A convex polygon N has a vertical thickness strictly less than α iff
there exists a strip of vertical thickness strictly less than α that covers N .

� Proof: let x denote the abscissa which corresponds to the maximum height
of N . The upper and lower border of N at abscissa x can be linked to either a
vertex or an edge. We can consider three different configurations:

1. edge-edge: this case only appears if both edges are parallel (see Fig. 4.b). If
this were not the case, it would exist a greater value for the vertical thickness
of N (see Fig. 4.a). As N is convex, it is included in the strip defined by
these two edges. So N can be covered by a strip of correct thickness.

2. edge-vertex: as the maximum is achieved at this abscissa, the line passing
through this vertex and parallel to this edge is tangent to N (see Fig. 4.c).
We use this line and the previous edge to build a valid strip.

302 L. Buzer

(c)(b)(a)

(d)

(e)

vertical thickness

vertical thickness vertical thickness

eul eur

eul

ell
elr

elr

eur

ell

α

Fig. 4. The different configurations of the vertical thickness location

3. vertex-vertex: this case is a bit more complicated. Let eul, eur, ell and elr

denote the emerging edges from these two vertices. As the polygon is convex,
we have slopeeur ≤ slopeeul

and slopeelr
≥ slopeell

. The maximum height
reached at this abscissa implies slopeeul

≥ slopeell
and slopeeur ≤ slopeelr

.
If we choose ell as a border of our strip, eul and elr lies inside. Assume that
slopeeur

≤ slopeell
. In this case (see Fig. 4.d) N is included in a valid strip.

In the opposite case where slopeeur
> slopeell

(see Fig. 4.e), this edge can
not be chosen as a border for our strip. Hopefully, eur is a correct choice.
Indeed, we have slopeeur ≤ slopeeul

and slopeeur ≤ slopeelr
by assumptions;

as slopeeur
> slopeell

this finally implies that N is included in a strip of
vertical thickness strictly less than α. �

Using lemmas 1 and 2, we finally obtain the next property which links the
thickness of a convex hull to the α-thick digital line recognition problem:

Property 1. A set of points is a piece of an α-thick digital line if and only if its
convex hull has an horizontal or vertical thickness strictly inferior to α.

3.3 The Importance of Convex Hull

A convex set C has a vertical thickness strictly less than α if and only if C and
its translation by α.ey have an empty intersection. Consider the case where a
point P is inserted on the right of C (see Fig. 5.a). Let u (resp. l) denote the
point lying on the upper (resp. lower) border through which a supporting line (a
line passing through P and tangent to C) passes. If the triangle ulP intersects
C +α.ey, then the vertical thickness of the new convex set is greater or equal to
α. Conversely, if the intersection is empty, the vertical thickness of ulP is strictly
less than α, so the intersection between ulP and ulP +α.ey is empty. It follows:

An Elementary Algorithm for Digital Line Recognition 303

ex

ey

ey

ex

P

lu

CH + ey

T hickness(ulP)CH
CH − ey

CH + ey

CH

A

CH

csl1
csl2P

B

t1
t2

p1

p2
l

u

CH + ey

(f) Example 2 - a piece of an α-thick digital line with α = 2.5

(d) Representation of D

CH + ey

CH + ey

D

(a) ulP does not intersect CH + ey (b) area delimited by the four critical supporting lines

(c) When a point P lies in A, ulP can not intersect CH + ey

(e) Example 1 - a piece of a naive digital line

Fig. 5. Domain of the points that maintain an α-thick digital line

304 L. Buzer

Property 2. We can insert a point to a convex set C while maintaining its vertical
thickness strictly below α if and only if the two supporting lines do not intersect
C + α.ey and C − α.ey.

For the convex hull CH of a given set of points, we want to determine the domain
D of the points that can be inserted while preserving the vertical thickness of
CH strictly below α. We call critical supporting lines (CSL) between two convex
objects C1 and C2 the two lines tangent to both convex objects such that C1
and C2 lie on opposite sides of each line. We show that the area A (see 5.b)
delimited by the four CSL between CH + α.ey and CH and between CH and
CH −α.ey plays an important role. Indeed, according to the previous property,
when a point lying in A is inserted the new vertical thickness is always valid.
We now examine the area B above the two CSL t1 and t2 and under CH + ey

(see Fig. 5.c). Let csl1 and csl2 denote the vertices of CH + ey that support
t1 and t2. We show that when a point P lying in B is inserted, the associated
supporting segments p1 and p2 between P and CH do not intersect CH + ey.
By assumptions, P is above t1 and t2. As p1 (resp. p2) is tangent to CH, it must
cross t1 (resp. t2). So slopep1 ≤ slopet1 and slopep2 ≥ slopet2 . By convexity
properties, the slopes of all the edges of CH between csl1 and csl2 are ranging
from the slope of t1 to the slope of t2. Thus p1 and p2 can not cross CH + ey.
Finally, the upper border of D is delimited by the CSL lines emerging from csl1
and csl2 and the edges of CH + ey located between these two vertices (see Fig.
5.d). We symmetrically define the lower border of D. We present this result for
a naive digital line (see Fig. 5.e) and an α-thick digital line with α = 2.5 (see
Fig. 5.f). The CSL can be computed in optimal linear time with the rotating
calipers approach [Tou83].

4 Algorithm Design

4.1 Computing the Vertical Thickness of a Convex Hull

We recall that our definition of thickness is different from the one usually used
in Computational Geometry. In this field, the thickness is linked to the strip of
minimal width (computed with the L2-norm) that encloses all the points (see
Fig. 6). The rotating caliper algorithm [HoT88] can be used to compute this
value in optimal linear time in the number of vertices. In the same way, we can
determine the vertical thickness in linear time by using a double-traversal of the
upper and lower borders of the convex hull. We set up a new approach based
on convexity properties. Let f(x) and g(x) denote the functions defined by the
upper and lower borders of the convex hull (see Fig. 7). The vertical thickness is
always linked to a hull vertex (the edge-edge case is always associated to a vertex-
edge or vertex-vertex case). So we only have to check the value of height(x) at
the abscissas of the hull vertices. Notice that f is concave and g is convex, so
the difference height(x) = f(x) − g(x) is a concave function and we can apply
a binary search to find its optimum. For example, suppose we have k vertices
on U the upper border of the hull. We compute the value height(Uk/2) and

An Elementary Algorithm for Digital Line Recognition 305

Fig. 6. The common thickness definition

g

Ox

Oy

Ox

Oy height(x)f

Fig. 7. The vertical thickness

height(Uk/2+1). By another binary search on the lower border, we determine
which vertices are faced to Uk/2 and Uk/2+1 in O(logn) time. Suppose that
height(Uk/2) < height(Uk/2+1). Then by convexity property all the vertices of
indices less than k/2 can not define the optimum. So we are able to reject one
half of the upper vertices. We perform in the same way for the vertices of the
lower hull. So we have removed at least one half of all the vertices in O(logn)
time. By continuing the binary search on height(x), we finally obtain the vertical
thickness in O(log2n) time.

4.2 The Incremental Approach

This is an on-line version where no information about insertions are known in
advance. At each iteration, thickness and covering strip are computed. When
a new point is inserted, we compute the resulting convex hull using classical
incremental convex hull algorithm [PS85,BKS95] in O(logn) time. When the
point lies inside the current strip, the thickness is unchanged. When the point
lies outside, we have to compute the new thickness. Using the previous method,
we would obtain an O(n log2 n) algorithm, but we improve the global complexity
by simplifying the binary search. We only consider the case where the point is
inserted on the right of the hull (see Fig. 8.a), others cases are similar (see Fig.
8.b). The light grey area corresponds to a triangle; its thickness can be computed
in constant time. The other area is delimited by a piece of the upper border and
a tangent. Thus, all the vertices of this area are linked to the same segment and
we can perform a simple binary search to find in O(logn) time the maximum
height of this area. Finally, we can update the vertical thickness in O(logn) time
per insertion.

(a) (b)

Fig. 8. Computing the new thickness in the incremental method

306 L. Buzer

4.3 A Special Case

We often know in real applications that points are inserted in the same direction.
Previous algorithms [DR95] take advantage of this in order to obtain a linear time
complexity. We present an elementary implementation designed for this special
case. First, we recall that the incremental convex hull under this assumption
can be processed in O(n) time using classical methods [Mlk87]. We choose to
insert points by increasing abscissa (see Fig. 9). Notice that insertions on the
right of the convex hull shifts the vertical thickness to the right. Let β denote
the abscissa where the previous vertical thickness was located. The dimmed area
is delimited by the line x = β, a border of the previous strip and a tangent. It
covers the left part of the new convex hull. In this triangle, all values of height(x)
are less or equal to height(β). So the vertical thickness must be located on the
right of this area. We do not use a binary search anymore. We just traverse each
vertex on the right up to the maximal height. Each trial has a O(1) cost, and
the total number of trials is bounded by the total amount of inserted points. So
the incremental recognition of a digital line of thickness d can be computed in
O(n) time if we insert points in a given order.

α

Fig. 9. Insertion on the right shifts
vertical thickness to the right

iL

L

U

new iU + 1

height(new iU , new iL)

iU = new iU

iL + 1 = new iL
height(iU , iL)

Fig. 10. Notations of the algorithm

4.4 Pseudo-Code

We present (see Fig. 13) the main function used to compute the vertical thickness
of a convex hull: UPDATE VERTICAL THICKNESS. The hull will consist of
two lists U and L corresponding to its upper and lower borders. Let nU and
nL denote the size of U and L respectively. We call iU and iL the indices of
the couple of vertices lying on U and L respectively that define the vertical
thickness. When the case edge-vertex appears, we select the left vertex of the
edge. The other vertex is necessarily the one of UiU+1 and LiL+1 with minimum
abscissa (function HEIGHT). We call new iU and new iL (see Fig. 10) the
indices of vertices that are associated with the next discontinuity of height(x).
The implementation presented here processes points entered from left to right
(the insertion order in the vertical direction is unimportant). The same function
can be used in the three others directions by symmetrizing the (x, y) coordinates.

An Elementary Algorithm for Digital Line Recognition 307

4.5 Complexity of the Algorithms

We may use dynamic convex hull (incremental and decremental) that induces
an O(n log2 n) overhead [PS85]. We recall the complexities of our methods:

case convex hull incremental in one direction dynamic
thickness computation O(log2 n) O(n log n) O(n) O(n log2 n)

4.6 Applications of α-Thick Lines

We are able to convert any set of points into a polygonal chain of digital line
segments, even if no assumptions on connectedness can be done and no infor-
mation about thickness is known a priori. We present in Fig. 11 a first test on
a low quality digitization. We may adjust the thickness in order to obtain a
compromise between the number of segments and the conversion quality.

Pixel Traversal Order. First, we have to choose the pixel order that will be
used in our recognition process. Pixels are stored in a data structure L that allows
efficient range searching. Suppose we have a function STARTING POINT that
arbitrary selects a starting pixel. This point represents the first level and it can
be removed from L. To fill the next level we only have to select pixels that are in
the neighborhood of the pixels in the current level (using a particular distance
function). When no pixels are found, we widen the current neighborhood until
we find one or more points. When a maximal thickness δ is allowed for the
recognition, it is judicious to limit the maximal neighborhood to a width δ.
Thus, the holes of at most δ pixels can be filled. The pixels of the same level are
arbitrary ordered. We recall the entire process in the following algorithm and
present an example in figure 12.

The Overall Method. We process pixels one after the other relative to the
predefined order. When the thickness of the current digital segment exceeds the
given threshold δ, we backtrack to the previous pixel and select the corresponding
digital segment and the associated thickness (that may be between 0 and δ).
When we want to obtain a polygonal chain, we may insert the last pixel of the
previous digital segment in the next one. The method presented here is quite
elementary and is based on a greedy approach. Thus the result is completely
dependent of the chosen pixel traversal order and no uniqueness can be obtained.

Open Problems. When we have worked with digital segments, no considera-
tions have been done about the quality of the jonction between two consecutive
digital segments. In fact, pieces of them can cover themselves at the jonction.
Optimizations relatively to the number of digital segments and to the visual
quality remain to solve. Thus many questions are left untreated and their man-
agement would require an improved method that goes beyond the scope of this
paper.

308 L. Buzer

Fig. 11. A low quality digitization of the Italian coast converted using α-thick digital
segments (α = 2.5, 3 and 4.5). We successively obtain 37, 30 and 20 digital segments

7

1 2

3 4 5

6b

6a

8 9

1415

level 6 neighborhood

16c

12

10

17b 16b

17a 16a

13

11

Fig. 12. Computing the pixel order traversal

An Elementary Algorithm for Digital Line Recognition 309

Function ORDER PIXELS (L,Level,δ)

iCL = 1 – current level index
while (L.non empty)

Level[iCL] = STARTING POINT (L)

while (Level[iCL].non empty)

d = 1
repeat Level[iCL + 1] = Neighborhood(L, Level[iCL], d)

d = d + 1

until (Level[iCL + 1].non empty OR d > δ)
L.remove(Level[iCL])
iCL = iCL + 1

Function UPDATE VERTICAL THICKNESS (U ,nU ,L,nL,iU ,iL,h,P)

if (nU = 0) { nL = nU = 2; U1 = U2 = L1 = L2 = P ; h = 0; return; }
– backtracking to update the convex hull –

while (nU > 1) and (UnU −1 − UnU) ∧ (P − UnU) ≤ 0 { nU = nU − 1}
while (nL > 1) and (LnL−1 − LnL) ∧ (P − LnL) ≥ 0 { nL = nL − 1}

– when a vertex that defines the previous thickness is removed –
if (iU > nU) { iU = nU }
if (iL > nL) { iL = nL }

– insertion of the new point P –
nL = nL + 1; LnL = P ;
nU = nU + 1; UnU = P ;

– update Height(x) –
h = HEIGHT (U, L, iU , iL);

– traverse the hull while the height increases –
while (iL 	= nL − 1) or (iU 	= nU − 1)

if (UiU +1.x < LiL+1.x) { new iU = iU + 1; new iL = iL; }
else { new iU = iU ; new iL = iL + 1; }
hnext = HEIGHT (U, L, new iU , new iL);
if (hnext > h) { h = hnext; iU = new iU ; iL = new iL; }
else return;

Function HEIGHT (U ,L,iU ,iL)
if (Uiu .x < Lil .x) return V ERT DIST (Uiu , Uiu+1, Lil);
else return V ERT DIST (Lil , Lil+1, Uiu);

Fig. 13. The core function of the recognition method based on thickness computation

5 Conclusion and Future Works

We introduce a new digital line recognition method based on the vertical and
horizontal thickness. Our method is well adapted to recognize any set of points

310 L. Buzer

where no assumptions on connectedness can be done. The internal machinery
uses classical convex hull algorithms.

The knowledge of the convex hull of the current set of points allows to in-
crease the thickness computation efficiency, to make easier any implementation
in the two-dimensional case, to determine the points that can be inserted while
preserving a valid digital line, to obtain an incremental or dynamic method and
to extend our approach to points with real coordinates. We do not deal with the
strategy used to order points during the recognition. At each step, the thickness
is computed and we may suppose that the associated normal vector is close to
the local curvature. Thus, we may take advantage of this information in order
to enhance the overall conversion quality. Other criteria may be inserted like
density. Indeed, we may consider the ratio between the number of points inside
the hull and the hull surface. This would be an automatic criterion that could
replace the usual predefined thickness threshold. Such strategies combined with
the dynamic approach could lead to a new generation of adaptive algorithms...

The source code in C++ of our method as well as a basic geometry kernel,
some examples and some tests can be downloaded from the web page of the
author: www.esiee.fr/∼buzerl/DG/.

References

[BKS95] M. de Berg, M. van Kreveld, and S. Schirra. A new approach to subdivision
simplification. In Proc. of Auto-Carto 12, pages 79-88, 1995.

[Buz02] L. Buzer. Reconnaissance des plans discrets - Simplification polygonale.
Thèse, Université d’Auvergne, Clermont-Ferrand, 2002.

[Buz03] L. Buzer. A linear incremental algorithm for naive and standard digital lines
and planes recognition, Graphical Models, 65(1-3), pp. 61-76, 2003.

[DR95] I. Debled-Rennesson, J.-P. Reveillès. A linear algorithm for segmentation
of digital curves. International Journal of Pattern Recognition and Artificial
Intelligence, Volume 9, N. 6, dec. 1995.

[Hot88] M. E. Houle and G. T. Toussaint. Computing the width of a set. IEEE Trans.
Pattern Anal. Mach. Intell., PAMI-10, 761-765, 1988.

[Mlk87] A.A. Melkman. On-line construction of the convex hull of a simple polyline.
Information Processing Letters, 25:11-12, 1987.

[PS85] F.P. Preparata, M.I. Shamos. Computational Geometry. Springer-Verlag,
New-York, 1985.

[Rev91] J.P. Reveillès. Géometrie discrète, calculs en nombre entiers et algorith-
mique. Thèse d’état, Université Louis Pasteur, Strasbourg, 1991.

[Tou83] G.T. Toussaint. Solving geometric problems with the rotating calipers. Pro-
ceedings of IEEE MELECON’83, Athens, Greece, May 1983.

Supercover Model and Digital Straight Line
Recognition on Irregular Isothetic Grids

David Coeurjolly

Laboratoire LIRIS - CNRS FRE 2672,
Universit Claude Bernard Lyon1,

43 Bd du 11 novembre 1918,
Villeurbanne, France

dcoeurjo@liris.cnrs.fr

Abstract. On the classical discrete grid, the analysis of digital straight
lines (DSL for short) has been intensively studied for nearly half a cen-
tury. In this article, we are interested in a discrete geometry on irregular
grids. More precisely, our goal is to define geometrical properties on irreg-
ular isothetic grids that are tilings of the Euclidean plane with different
sized axis parallel rectangles.

1 Introduction

When a straight line is digitized on a square grid, we obtain a sequence of grid
points defining a digital straight-line segment. This computer representation
of such a simple Euclidean object has drawn considerable attention in many
applications (drawing [3], shape characterization [13, 14, 17, 7], ...). The structure
of DSL is now well known and links have been illustrated between DSL and
objects from number theory or theory of words (see Rosenfeld and Klette [26] for
a survey on digital straightness). Beyond this characterization, an important task
in computer vision consists in the recognition of DSL segments. More precisely,
given a set of pixels, we have to decide if there exists a DSL segment that contains
the given pixels. Many efficient algorithms exist to implement such a recognition
process [15, 18, 11, 4]. Based on a digital straight line recognition algorithm, we
can also define a segmentation process that decomposes a discrete curve into
maximal DSL segments.

In this article, we are interested in defining a geometry on irregular isothetic
grids. More precisely, we consider grids defined by a tiling of the plane using
axis parallel rectangles. Such a grid model includes, for example, the classical
discrete grid, the elongated grids [27] and the quadtree based grids [16]. In the
following sections, we focus a general supercover digitization model on the irreg-
ular isothetic grids which is consistent with the classical one if the discrete space
is considered. A previous work can be found in [8] in which irregular grids with
squares are considered. In this model, the chosen digitization scheme is the naive
model and it suffers from some inconsistencies. For example, the digitization of
an Euclidean straight line may be a disconnected set of pixels. In the following,

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 311–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

312 D. Coeurjolly

we generalize the model to irregular tilings of rectangles with an appropriate
digitization model.

Many applications may benefit from these developments. For example, we
can cite the analysis of quadtree compressed shape, or the use of geometrical
properties in objects represented by interval or affine arithmetics [21, 22, 10, 5].
In this last example, we talk about data driven grids.

Section 2 presents more formal definitions of the irregular grids which allow
to define the supercover model in Section 3. Then, we present the definition
and the recognition algorithm of digital straight lines in these grids (Section 4).
Experiments and results are shown in Section 5. Finally, we briefly illustrate the
application of the irregular model in interval arithmetic (Section 6).

2 Definitions

First of all, we define an irregular isothetic grid, denoted I, as a tiling of the plane
with isothetic rectangles. In this framework, the rectangles have not necessarily
the same size but we can notice that the classical digital space is a particular
irregular isothetic grid. In that case, all squares are centered in Z2 points and
have a border size equal to 1. Figure 1 illustrates some examples of irregular
isothetic grids.

In the following, a rectangle of an isothetic grid is called a pixel. Each pixel
P is defined by its center (xP , yP) ∈ R2 and a size (lxP , lyP) ∈ R2. Before we
introduce objects and straight lines in such grids, we need adjacency relations
between pixels.

Fig. 1. Examples of irregular isothetic grids: (from left to right) the classical discrete
grid ((xP , yP) ∈ Z2 and lxP = lyP = 1), an elongated grid (lxP = λ, lyP = μ and
(xP , yP) = (λi, μj) with (i, j) ∈ Z2), a quadtree decomposition (for a cell of level
k, (xP , yP) = (m

2k , n
2k) and lxP = lyP = 1

2k−1 for some m, n ∈ Z); a unilateral and
equitransitive tiling by squares: the size of the biggest square is equal to the sum of
the two other square sizes; finally a general irregular isothetic grid

Definition 1 (ve−adjacency, e−adjacency). Let P and Q be two pixels. P
and Q are ve-adjacent if:

|xP − xQ| =
lxP + lxQ

2
and |yP − yQ| ≤

lyP + lyQ
2

,

or

|yP − yQ| =
lyP + lyQ

2
and |xP − xQ| ≤

lxP + lxQ
2

.

Supercover Model and Digital Straight Line Recognition 313

P and Q are e-adjacent if we consider an exclusive “or” and strict inequalities
in the above ve-adjacent definition.

In the following definitions, we use the notation k-adjacency in order to ex-
press either the ve-adjacency or the e-adjacency. Using these adjacency defini-
tions, several basic objects can be defined:

Definition 2 (k−path). Let us consider a set of pixels E = {Pi, i ∈ {1, . . . , n}}
and a relation of k−adjacency. E is a k − path if and only if for each element
Pi of E, Pi is k−adjacent to Pi−1.

Definition 3 (k−object). Let E be a set of pixels, E is a k−object if and only if
for each couple of pixels (P,Q) belonging to E ×E, there exists a k−path between
P and Q in E.

Definition 4 (k-arc). Let E be a set of pixels, E is a k−arc if and only if for
each the element of E = {Pi, i ∈ {1, . . . , n}}, Pi has exactly two k−adjacent
pixels, except P1 and Pn which are called the extremities of the k−arc.

Definition 5 (k-curve). Let E be a set of pixels, E is a k-curve if and only if
E is a k-arc and P1 = Pn.

If we consider pixels such that lxP = lyP = 1 and (xP , yP) ∈ Z2 (i.e. a 2D
digital space), all these definitions coincide with the classical ones [24, 25]. More
precisely, the ve−adjacency (resp. e−adjacency) is exactly the 8-adjacency (resp.
the 4-adjacency).

In the following, we only consider geometrical properties of such objects. A
complete topological analysis of k−curves and k−objects is not addressed here.

3 Supercover Model on the Irregular Isothetic Grids

Before defining the digital straight lines on the irregular isothetic grids, we have
to consider a digitization model. In the following, we choose to extend the super-
cover model. This model was first introduced by Cohen-Or and Kaufman in [9]
on the classical discrete grid and then widely used since it provides an analytical
characterization of basic supercover objects (e.g. lines, planes, 3D polygons, ...)
[2, 1].

Definition 6 (Supercover on irregular isothetic grids). Let F be an Eu-
clidean object in R2. The supercover S(F) is defined on an irregular isothetic
grid I by:

S(F) = {P ∈ I | B∞(P) ∩ F �= ∅} (1)

= {P ∈ I | ∃(x, y) ∈ F, |xP − x| ≤ lxP
2

and |yP − y| ≤ lyP
2

} (2)

314 D. Coeurjolly

Fig. 2. Illustration of the supercover digitization of a curve (left) and of a straight line
(right)

where B∞(P) is the rectangle centered in (xP , yP) of size (lxP , lyP) (if lxP = lyP ,
B∞(P) is the ball centered in (xP , yP) of size lxP for the L∞ norm).

This model has got several properties:

Proposition 1. Let F, G be Euclidean objects in R2, α ∈ R2 and an I-grid, we
have:

S(F ∪ G) = S(F) ∪ S(G) , (3)

S(F) =
⋃

α∈F

S(α) , (4)

S(F ∩ G) ⊆ S(F) ∩ S(G) , (5)
if F ⊆ G then S(F) ⊆ S(G) . (6)

Proof. All these statements can be easily proved by definition of the supercover
model. For example, we prove the first one as follows:

S(F ∪ G) = {p ∈ I | B∞(P) ∩ (F ∪ G) �= ∅}
= {p ∈ I | (B∞(P) ∩ F) ∪ (B∞(P) ∩ G) �= ∅}
= S(F) ∪ S(G)

Figure 2 illustrates some examples of the supercover digitization of Euclidean
objects.

If I is the classical digital space (i.e. (xP , yP) ∈ Z2 and lxP = lyP = 1), many
links exist between the supercover of an Euclidean straight line and classical
digital straight line definitions [1, 26]. Since we have not any assumption on the
irregular grid, no strong topological property can be stated on the supercover of
an Euclidean straight line.

Proposition 2. Let l be an Euclidean straight line and a I-grid, the S(l) is a
single ve−object.

Proof. The proof is direct since I is a tiling of the plane with closed pattern.
The digitization of l is necessarily a connected set of pixels.

Supercover Model and Digital Straight Line Recognition 315

4 Digital Straight Line Definition and Recognition

4.1 Definitions

Definition 7 (Irregular Isothetic Digital Straight Line). Let S be a set of
pixels in I, S is called a piece of irregular digital straight line (IDSL for short)
iff there exists an Euclidean straight line l such that:

S ⊆ S(l) . (7)

In other words, S is a piece of IDSL iff there exists l such that:

∀P ∈ S, B∞(P) ∩ l �= ∅ . (8)

To detect if B∞(P) ∩ l is empty or not, we use the notations presented in
Figure 3. Hence, B∞(P)∩l is not empty iff l crosses either (or both) the diagonals
d1 or d2 of P .

Without loss of generality, we suppose that l is given by y = αx + β with
(α, β) ∈ R2 (an appropriate treatment can be design to handle the straight lines
x = k with k ∈ R). To solve the recognition problem, we use the following
statement:

B∞(P) ∩ l �= ∅ ⇔ l ∩ d1 �= ∅ and α ≥ 0 (9)
or l ∩ d2 �= ∅ and α < 0 (10)

During a recognition process, it is convenient to consider the set of Euclidean
straight lines whose digitization contains the set of pixels S: if such a set is
empty, we can conclude that S is not a discrete straight line segment. In the
literature, the set of Euclidean straight lines whose digitization contains S is
called the preimage of S. Many works have been done concerning the preimage
analysis in the classical discrete grid [12, 18, 19].

We first consider Equation (9): given the pixel P , the straight line containing
d1 is

y = − lyP
lxP

· x + yP +
lyP
lxP

· xP . (11)

l

(xP , yP)

d1

d2

Fig. 3. Notations used to detect if the pixel of center (xP , yP) belongs to the supercover
of a straight line l (d1 and d2 are the diagonals of the rectangle P)

316 D. Coeurjolly

If we compute the intersection point between this straight line and l, the
abscissa x is given by:

x ·
(
α +

lyP
lxP

)
= yP +

lyP
lxP

· xP − β . (12)

Hence, to ensure that l intersects d1, x must be such that:

xP − lxP
2

≤ x ≤ xP +
lxP
2

. (13)

Since α ≥ 0, we have:

(
xP − lxP

2

)
·
(
α +

lyP
lxP

)
≤ yP +

lyP
lxP

· xP − β ≤
(
xP +

lxP
2

)
·
(
α +

lyP
lxP

)
(14)

Finally, the condition given in Equation (9) can be represented by the two
following inequalities in the (α, β)-parameter space:

E+(P) =

⎧⎨⎩α
(
xP − lxP

2

)
+ β − yP − lyP

2 ≤ 0

α
(
xP + lxP

2

)
+ β − yP + lyP

2 ≥ 0
. (15)

If we consider Equation (10) and using similar arguments, we obtain the
following inequalities:

E−(P) =

⎧⎨⎩α
(
xP − lxP

2

)
+ β − yP + lyP

2 ≥ 0

α
(
xP + lxP

2

)
+ β − yP − lyP

2 ≤ 0
. (16)

E+(P) is defined for α ≥ 0 and E−(P) for α < 0. We can now define the
preimages of a piece of IDSL:

Definition 8 (Preimages of an IDSL). Let S be a piece of IDSL, the two
preimages P+ and P− of S are given by:

P+(S) =
⋂

P∈S

E+(P) , (17)

P−(S) =
⋂

P∈S

E−(P) . (18)

Hence, the recognition process can be described as follows:

Proposition 3. Let S be a set of pixels in a I-grid. S is a piece of IDSL iff
P+(S) �= ∅ or P−(S) �= ∅.

Supercover Model and Digital Straight Line Recognition 317

4.2 Recognition

Using Proposition 3, the recognition on an IDSL leads to a linear programming
problem: we have to decide whether a linear inequality system has a solution or
not. More precisely, two different classes of algorithms exist: the IDSL identifi-
cation algorithms which decide if S is an IDSL or not, and the IDSL recognition
algorithms which return the complete preimages (maybe empty) of the recog-
nized IDSL.

Given a linear inequality system, several algorithms can be found to test if a
solution exists, i.e. to identify an IDSL. For example, the Meggido’s algorithm
[20] can decide if a solution exists in O(n) time if n is the number of linear con-
straints. An incremental version of this algorithm with the same computational
cost can also be found [6].

If we need a complete description of the feasible region, i.e. a recognition of
the IDSL, Preparata and Shamos [23] proposed an optimal O(n log n) time online
algorithm. This algorithm can easily be implemented since basic computational
geometry tools are used (convex hull and dual-space transform).

In Algorithm 1, we present the simple IDSL segmentation algorithm of a
ve−arc. The preimage update in lines 6 and 7 can be performed using either an
identification or a recognition algorithm.

Algorithm 1 IDSL segmentation algorithm
1: Let S = {Pi, i = 1, ..., n} be the ve−arc
2: P+ := {α ≥ 0}
3: P− := {α < 0}
4: Mark P1 as the starting point of an IDSL
5: for i from 1 to n do
6: Update the preimage P+ with E+(Pi)
7: Update the preimage P− with E−(Pi)
8: if P+ = ∅ and P− = ∅ then
9: {the IDSL recognition fails}

10: Mark Pi as a starting point of a new segment
11: P+ := {α ≥ 0} ∩ E+(Pi)
12: P− := {α < 0} ∩ E−(Pi)
13: end if
14: end for

If we consider the classical discrete model (i.e. (xP , yP) ∈ Z2 and lxP = lyP =
1), Algorithm 1 implements a recognition of classical supercover digital straight
lines.

5 Experiments and Results

In our experiments we have implemented Algorithm 1 in Maple using the built-
in linear programming procedures. First, Figure 4 illustrates the recognition of

318 D. Coeurjolly

(a) (b) (c)

Fig. 4. Illustration of the preimages associated to a piece of IDSL: (a) a sequence of
pixels with (xP , yP , lxP , lyP) in {(1, 1, 1, 1), (3, 1, 3, 1), (5, 1, 1, 2)}, (b) its preimage P+

and (c), its preimage P − in the (α, β)-parameter space

Fig. 5. Segmentation of a classical 8−connected curve into IDSL

a simple piece of IDSL with its associated preimages. Each point (α0, β0) in the
preimages P+ or P− (gray areas in Figure 4-(b − c)), is an Euclidean straight
line whose supercover contains the pixels in Figure 4-(a).

In Figure 5, we illustrate an IDSL segmentation of a classical discrete curve.
The light gray pixel is the starting point of the algorithm and dark gray pixels
represent the starting points of the IDSL segments. Note that since the Euclidean
straight lines with equations x = k (with k ∈ R) are excluded from the preimages,
the IDSL recognition of the left vertical part of the curve differs from the IDSL
recognition of the horizontal ones which goes one pixel further.

Figure 6 presents the result on a sequence of pixels defined as the border
pixels of a quadtree representation of a binary shape (Figure 6-(a)).

Supercover Model and Digital Straight Line Recognition 319

(a) (b)

Fig. 6. (a) Quadtree decomposition of a binary object and (b), the segmentation of its
boundary pixels into IDSL

Fig. 7. Illustration of the segmentation algorithm on a general irregular curve. The
Euclidean straight lines are manually extracted from the preimages associated to each
IDSL segment

Finally, Figure 7 shows the segmentation result on a general ve−curve. In
this illustration, we have superposed to the curve an Euclidean straight line per
IDSL segment manually extracted from the preimages.

320 D. Coeurjolly

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Arithmetic intervals
f(x)

(a)

(b)

Fig. 8. The approximation of the function f(x) using the interval arithmetic (a) and
the result of the IDSL segmentation algorithm on these intervals

6 An Application to Interval Arithmetic Analysis

In this section, we briefly present an application for which the irregular isothetic
model has been developed: the analysis of interval arithmetic objects. The in-
terval arithmetic is a widely used range based model for numerical computation
where each quantity x is represented by an interval x̄ of floating point numbers
[21, 22, 10, 5]. On those intervals, arithmetical operations are defined in such way
that each resulting interval x̄ is guaranteed to contain the unknown value corre-
sponding to the real x quantity.

Briefly, an interval x̄ is represented by [x̄.lo, x̄.hi] and the basic operations
are given by:

x̄ + ȳ = [x̄.lo + ȳ.lo, x̄.hi + ȳ.hi] (19)
x̄ − ȳ = [x̄.lo − ȳ.hi, x̄.hi − ȳ.lo] (20)
x̄ · ȳ = [min (x̄.lo · ȳ.lo, x̄.lo · ȳ.hi, x̄.hi · ȳ.lo, x̄.hi · ȳ.hi), (21)

max (x̄.lo · ȳ.lo, x̄.lo · ȳ.hi, x̄.hi · ȳ.lo, x̄.hi · ȳ.hi)] (22)

Many other operations can be designed in an interval arithmetic form. In
Figure 8-(a), we have the approximation using interval arithmetic representation
of the function f(x̄) = −(x̄ − 1) · (x̄ + 1) where the intervals x̄ are given by a
uniform subdivision of [−1, 1] into 20 subintervals. Each rectangle in Figure 8-(a)
is given by [x̄.lo, x̄.hi] × [f(x̄).lo, f(x̄).hi]. By construction of the intervals and
since each operation guarantees that the real function belongs to each interval, we
can prove that such an interval arithmetic object is a ve−curve. Hence, the IDSL
segmentation algorithm can be applied to obtain a polygonal approximation of
the intervals (see Figure 8-(b)). In that case, the entire grid I is unknown, only
a subset of it is given. Furthermore, since the set of isothetic irregular pixels are
defined by f(x̄), we talk about a data driven grid model.

The use of IDSL on objects given by intervals permits to have a first geomet-
rical analysis of the unknown underlying Euclidean curve.

Supercover Model and Digital Straight Line Recognition 321

7 Conclusion

In this article, we have presented a global digitization framework on irregular
isothetic grids: the supercover model. Based on this digitization scheme, we have
defined the digital straight lines in such grids and algorithmic solutions to solve
the recognition and segmentation problem. All these developments allow us to
characterize and analyze border of quadtree objects for example. Note that all
the proposed definitions and algorithms match perfectly with the classical ones
in the particular case of the discrete model. We have also illustrated the interest
of such a model to analyze object boundaries of quadtree encoded shapes and
in the interval arithmetic field.

Future works can be decomposed into two main problems : first the topo-
logical and arithmetical analysis of IDSL when a small class of irregular grids
is considered (e.g. the quadtree based model). Then, the use of these discrete
geometry tools in the interval analysis field.

References

1. E. Andrès. Modélisation analytique discrète d’objets géométriques. Master’s thesis,
Laboratoire IRCOM-SIC, Université de Poitiers, 2000.

2. E. Andrès, P. Nehlig, and J. Françon. Tunnel-free supercover 3D polygons and
polyhedra. Computer Graphics Forum, 16(3):C3–C13, September 1997.

3. J. Bresenham. An incremental algorithm for digital plotting. In Proc. ACM Natl.
Conf., 1963.

4. V. E. Brimkov and S. S. Dantchev. Digital hyperplane recognition in arbitrary
fixed dimension. Technical report, CITR-TR-154 Center for Image Technology
and Robotics, University of Auckland, New Zealand, 2004.

5. K. Bühler. Linear interval estimations for parametric objects: Theory and appli-
cation. pages 522–531.

6. L. Buzer. An incremental linear algorithm for digital line and plane recognition
using a linear incremental feasibility problem. In 10th International Conference on
Discrete Geometry for Computer Imagery, number 2301 in LNCS, pages 372–381.
Springer, 2002.

7. D. Coeurjolly and R. Klette. A comparative evaluation of length estimators of
digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):252–258, feb 2004.

8. D. Coeurjolly and L. Tougne. Digital straight line recognition on heterogeneous
grids. In SPIE Vision Geometry XII, volume 5300, pages 108–116, san Jose, USA,
2004.

9. D. Cohen-Or and A. Kaufman. Fundamentals of surface voxelization. Graphical
models and image processing: GMIP, 57(6):453–461, November 1995.

10. L.H. de Figueiredo and J. Stolfi. Self-validated
numerical methods and applications. 1997.
http://www.dcc.unicamp.br/~stolfi/EXPORT/projects/affine-arith/.

11. I. Debled and J.P. Reveillès. A linear algorithm for segmentation of digital curves.
In Third International Workshop on parallel Image Analysis, June 1994.

12. L. Dorst and A. W. M. Smeulders. Discrete representation of straight lines. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6:450–463, 1984.

322 D. Coeurjolly

13. L. Dorst and A. W. M. Smeulders. Length estimators for digitized contours. Com-
puter Vision, Graphics, and Image Processing, 40(3):311–333, December 1987.

14. L. Dorst and A. W. M. Smeulders. Discrete straight line segments: Parameters,
primitives and properties. In R. Melter, P. Bhattacharya, and A. Rosenfeld, editors,
Vision Geometry, series Contemporary Mathematics, volume 119, pages 45–62.
American Mathematical Society, 1991.

15. A. Hübler E. Creutzburg and V. Wedler. Decomposition of digital arcs and contours
into a minimal number of digital straight line segments. In Proc. 6th Intl. Conf.
on Pattern Recognition, page 1218, 1982.

16. R. A. Finkel and J. L. Bentley. Quad trees: a dsta structure for retrieval on
composite key. Acta Informatica, 4(1):1–9, 1974.

17. R. Klette and B. Yip. The length of digital curves. Machine Graphics & Vision,
9:673–703, 2000. extended version of: R. Klette, V. V. Kovalevsky, B. Yip. Length
estimation of digital curves. In Proc. Vision Geometry VIII, SPIE 3811, pages
117–129.

18. M. Lindenbaum and A. M. Bruckstein. On recursive, o(n) partitioning of a digitized
curve into digital straigth segments. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(9):949–953, september 1993.

19. M. D. McIlroy. A note on discrete representation of lines. AT&T Technical Journal,
64(2):481–490, February 1985.

20. N. Meggido. Linear programming in linear time when the dimension is fixed.
Journal of the ACM, 31(1):114–127, 1984.

21. Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.
22. Ramon E. Moore. Methods and Applications of Interval Arithmetic. Studies in

Applied Mathematics. SIAM, Philadelphia, 1979.
23. F. P. Preparata and M. I. Shamos. Computational Geometry : An Introduction.

Springer-Verlag, 1985.
24. A. Rosenfeld. Connectivity in digital pictures. Journal of the ACM, 17(1):146–160,

January 1970.
25. A. Rosenfeld. Digital straight lines segments. IEEE Transactions on Computers,

pages 1264–1369, 1974.
26. A. Rosenfeld and R. Klette. Digital straightness. In S. Fourey, G.T. Herman,

and T.Y. Kong, editors, International Workshop on Combinatorial Image Analysis,
volume 46 of Electronic Notes in Theoretical Computer Science, Temple University,
Philadelphia, U.S.A., August 2001. Elsevier Science Publishers.

27. I.-M. Sintorn and G. Borgefors. Weighted distance transforms for images using
elongated voxel grids. In 10th International Conference on Discrete Geometry for
Computer Imagery, number 2301 in LNCS, pages 244–254. Springer, 2002.

Discrete Epipolar Geometry

Masatoshi Hamanaka1, Yukiko Kenmochi2, and Akihiro Sugimoto3

1 Department of Information Technology, Okayama University, Japan
2 UMR 8049 - IGM, CNRS/University of Marne-la-Vallée/ESIEE, France

3 National Institute of Informatics, Japan
y.kenmochi@esiee.fr
sugimoto@nii.ac.jp

Abstract. The epipolar geometry, which lies in the basis of 3D recon-
struction techniques in the field of computer vision, is formulated in con-
tinuous spaces and gives geometric relationships between different views
of a point in space. In applications, however, we cannot deal with points
themselves in digital images. This is because digital images involve some
digitization process and the smallest unit in digital images is a pixel.
In this paper, we propose a discrete version of the epipolar geometry,
called the discrete epipolar geometry, that gives geometric relationships
between pixels rather than points. We then apply this discrete epipolar
geometry to 3D reconstruction.

1 Introduction

The problem of inferring 3D information of a scene from a set of its images has a
long history in computer vision [3, 4, 7]. In particular, the epipolar geometry [7],
which is the intrinsic projective geometry between two views independent of
scene structure, has played a central role in reconstructing 3D information.

An intuitive interpretation of the epipolar geometry can be summarized as
follows. Suppose a point in the 3D space is imaged in two views observed from
two given different viewpoints. Each image point together with its viewpoint
defines a straight line (a line in short below) in space, which is known as a ray of
sight. Since we consider two viewpoints, we have two rays of sight with respect to
a spatial point. In general, two lines in space are in a twisted position and do not
meet. In our situation, however, two rays of sight do have the intersection, i.e.,
the point in space in observation, since we observe the point from two different
viewpoints. This results in a constraint on the coordinates of two image points.
The geometrical description of this constraint is the epipolar geometry and its
algebraic description is the epipolar equation. As we see, the epipolar geometry
is on the framework of projections between continuous spaces.

In applications, however, we cannot deal with points themselves in digital
images. This is because digital images involve some digitization process and the
smallest unit in digital images is not a point but a pixel. In fact, in the presence
of noise including digitization errors, two rays of sight do not generally meet,
which causes the problem of finding the best point of intersection [6].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 323–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 M. Hamanaka, Y. Kenmochi, and A. Sugimoto

A tremendous amount of efforts have been made to deal with noise and to
show the robustness of developed methods (see [5, 8, 9, 12], for example). Some
introduce a noise model and statistically analyze the stableness and robustness
from the theoretical point of view. Some methods are experiment-oriented: they
show evidences of the robustness by their intensive experiments. In such studies,
however, errors incurred in the digitization process are not directly treated1

and they are regarded as portions of observation errors. This indicates that few
attempts have been made to discriminate digitization errors from observation
errors.

Digitization errors and observation errors are originally different from each
other and they have to be discriminated. This is because these two kinds of errors
are generated in different mechanisms. This paper attempts to discriminate the
two kinds of errors, focusing on pixels as the smallest unit of digital images.
Namely, we propose the discrete epipolar geometry, i.e., a discrete version of the
conventional epipolar geometry. The discrete epipolar geometry is formulated
through projections from the continuous 3D space to discrete image planes. We
introduce the notions of a pyramidal ray of sight and a discrete epipolar line, and
describe them in the mathematically well-defined form. We also present some
experiments of 3D reconstruction using the discrete epipolar geometry.

2 Epipolar Geometry

We review here the conventional epipolar geometry and give a mathematically
rigorous definition to an epipolar line.

We assume that the position and orientation of a camera with the focal length
f are given. We denote by Rn the n-dimensional space over the real number field
R. We also denote by I (⊂ R2) a finite plane representing an image plane. Let C
be the camera coordinate system, as shown in Fig. 1, where the origin coincides
with the viewpoint, the xy-plane is parallel to the image plane I, and the z-
coordinate is parallel to the optical axis and toward to the principal point of the
image plane. We also introduce a coordinate system to I so that its origin is the
principal point and its x- and y-coordinates are respectively identical with those
of C.

Let2 P = (X,Y,Z)� denote a point in V (⊂ R3) where V is the 3D space
observable by the camera. We then have its image point p = (x, y)�:

x = f
X

Z
, y = f

Y

Z
. (2.1)

The viewpoint, i.e., the origin of C, and p̃ = (x, y, f)� define a line in the 3D
space. This line is known as the ray of sight of an image point p.

1 In the latter half of 1980s, some discussion on digitization errors was reported [2, 11].
Such discussion, however, seems to be limited with the knowledge available at that
time.

2 We use column vectors and denote by x� the transposition of a vector x.

Discrete Epipolar Geometry 325

P

I1 I2

p1
p2

x1
y1

z1
x2

y2

z2
C1

C2

ray of sight

epipolar plane

epipolar line

Fig. 1. The conventional epipolar geometry

We now discuss the case of two cameras. Letting two calibrated cameras be
available (Fig. 1), we denote by C1 and C2 their camera coordinate systems, and
by I1 and I2 the finite planes representing their image planes. We also denote
their focal lengths by f1 and f2.

When we observe a point P in the 3D space, we obtain its two image points
p1 and p2 on I1 and I2 respectively. We call them corresponding points with
respect to P . P and two viewpoints define a plane in the 3D space, called an
epipolar plane of P . As shown in Fig. 1, two image points p1 and p2 are also on
the epipolar plane of P . The intersection of the epipolar plane and each image
plane forms a line, called an epipolar line. This epipolar line provides us with a
constraint on the corresponding points independent of the position of a point in
the 3D space. Namely, for a given point in an image plane, the location of its
corresponding point in the other image plane is bounded on the epipolar line.

This geometric configuration can be algebraically described with the essential
matrix. Essential matrix E, which is defined by3 E = [t]×R where R and t are a
rotation matrix and a translation vector relating the coordinates in C1 and C2
[7], thus plays a central role in the conventional epipolar geometry. Namely, for
a pair of corresponding points, p1 = (x1, y2)� ∈ I1 and p2 = (x1, y2)� ∈ I2, we
have

p̃�
1 Ep̃2 = 0, (2.2)

where p̃1 = (x1, y1, f1)� and p̃2 = (x2, y2, f2)�. (2.2) is called the epipolar
equation, providing that two cameras are calibrated.

The epipolar equation gives the constraint on pairs of corresponding points
across two views. To be more specific, for a given point p1 ∈ I1, the location of
its corresponding point in I2 is restricted into the line satisfying (2.2). This line
is identical with the epipolar line. Mathematically, the epipolar line EL(p1) for
p1 ∈ I1 is defined by

EL(p1) =
{
p2 ∈ I2 | p̃�

1 Ep̃2 = 0
}
. (2.3)

We note that EL(p1) is a set of points in I2 that satisfy the epipolar equation.

3 []× is the 3×3 skew-symmetric matrix constructed from a 3D vector : []× = ×
for any 3D vector .

326 M. Hamanaka, Y. Kenmochi, and A. Sugimoto

x
y

v1(q) v4(q)

v3(q)v2(q)

Fig. 2. The region Ω(q) ⊂ I dominated by pixel q = (i, j)� ∈ K and its four vertices

3 Digitization of an Image Plane

The smallest unit of images is not a point but a pixel. This indicates that an
image plane is not continuous but digitized. We here introduce a digitization
into an image plane. We denote by 1/rx and 1/ry the resolutions of x- and
y-coordinates. We also denote by Z the set of all integers.

For a given point p = (x, y)� ∈ I, we define

i =) x

rx
+

1
2
*, j =) y

ry
+

1
2
*. (3.1)

q = (i, j)� ∈ Z2 is a digitization of p and called a pixel representing p. Applying
this digitization to all the points in an image plane I leads to the digitization of
the image plane I:

K =
{(

i
j

)
∈ Z2 | rx

(
i − 1

2

)
≤ x < rx

(
i +

1
2

)
,

ry

(
j − 1

2

)
≤ y < ry

(
j +

1
2

)
,

(
x
y

)
∈ I

}
. (3.2)

We note that this digitization ensures a surjective mapping from points in I to
pixels in K.

Conversely, the region Ω(q) ⊂ I dominated by pixel q = (i, j)� ∈ K is given
by

Ω(q) =
{(

x
y

)
∈ I | rx

(
i − 1

2

)
≤ x < rx

(
i +

1
2

)
,

ry

(
j − 1

2

)
≤ y < ry

(
j +

1
2

)}
, (3.3)

which is illustrated in Fig. 2. Note that the solid lines and the black circles are
included in Ω(q) while the dotted lines and the white circles are not. We see in
Fig. 2 that Ω(q) forms a rectangle.

A point in space is imaged in a view as given in (2.1). Combining (2.1) and
(3.1) enables us to uniquely determine the pixel representing its image point for
a given point in space. Namely, for a point P = (X,Y,Z)�, the pixel q = (i, j)�

representing its image point is written by

i =) fX

rxZ
+

1
2
*, j =) fY

ryZ
+

1
2
*. (3.4)

We now have the following proposition.

Discrete Epipolar Geometry 327

P

K1 K2

pyramidal ray of sight

discrete
epipolar plane

Fig. 3. Discrete epipolar geometry: a pyramidal ray of sight for a pixel in the first
image plane and its projection onto the second image plane

Fig. 4. Discrete epipolar line obtained from epipolar inequalities: two examples without
(left) and with (right) an epipole

Proposition 1. Any point P in V has the unique pixel in K that represents
an image point of P .

Various digitization schemes including (3.1) have been already proposed to
discuss geometric properties of digitized objects such as connectivities, bubble-
freeness and topologies (see [1, 10], for example). In our case, we employ (3.1) to
obtain Proposition 1 that plays an important role for building up our discrete
epipolar geometry.

4 Discrete Epipolar Geometry

In the conventional framework, for a point p1 in the image plane I1, a ray of sight
is defined as the line going through p1 and the viewpoint. Projecting this ray of
sight onto the image plane I2 observed from another viewpoint forms an epipolar
line in I2 (see (2.3) and Fig. 1). In our framework, which we call the discrete
epipolar geometry, on the other hand, for a pixel q1 in K1, i.e., the digitization
of I1, the quadrangular prism is defined by the pixel q1 and the viewpoint as
shown in Fig. 3. In this paper, this quadrangular prism is called a pyramidal ray
of sight. Projecting the pyramidal ray of sight onto the other image plane I2
forms a region that is identified by two inequalities, called epipolar inequalities.
We digitize the region to identify it as a set of pixels among the digitization of
I2, i.e., K2 (Fig. 4). We call the set a discrete epipolar line.

The above mentioned geometric configuration is algebraically captured by
the following steps.

328 M. Hamanaka, Y. Kenmochi, and A. Sugimoto

1. Define a pyramidal ray of sight for a given pixel q1 ∈ K1.
2. Define the epipolar inequalities as the projection of the pyramidal ray of

sight onto I2.
3. Obtain the discrete epipolar line in K2.

4.1 Pyramidal Ray of Sight

We here give the algebraic description to a pyramidal ray of sight (Fig. 3).
In our digitization of an image plane into pixels, any pixel forms a rectangle

of rx by ry, and thus has four vertices. Given a pixel q = (i, j)� ∈ K, we define
four vertices vk(q) ∈ I (k = 1, 2, 3, 4) as illustrated in Fig. 2:

v1(q) =
(

rx

(
i − 1

2

)
, ry

(
j − 1

2

))�
, v2(q) =

(
rx

(
i − 1

2

)
, ry

(
j +

1
2

))�
,

v3(q) =
(

rx

(
i +

1
2

)
, ry

(
j +

1
2

))�
, v4(q) =

(
rx

(
i +

1
2

)
, ry

(
j − 1

2

))�
.

q ∈ K together with a viewpoint defines the quadrangular prism:

S(q) = {X ∈ V | (ṽ1(q) × ṽ2(q))�X ≥ 0, (ṽ2(q) × ṽ3(q))�X > 0,

(ṽ3(q) × ṽ4(q))�X > 0, (ṽ4(q) × ṽ1(q))�X ≥ 0}, (4.1)

where X is the coordinates of a 3D point represented in the camera coordi-
nate system C, V is the 3D space observable from the viewpoint, and ṽk(q) =
(vk(q)�, f)�. S(q) is called the pyramidal ray of sight of q.

4.2 Epipolar Inequalities

For a given pixel q1 ∈ K1, we have four vertices, each of which together with two
given viewpoints defines its epipolar plane. We see that the pyramidal ray of sight
S(q1) of q1 is located between two of the four epipolar planes (cf. Fig. 3). We
call the region between the two epipolar planes that include S(q1) the discrete
epipolar plane of q1. The discrete epipolar plane is represented by a pair of
half-space inequalities. The intersection of the discrete epipolar plane and the
image plane I2 thus forms a region bounded by the two epipolar lines in I2. The
region is represented by two inequalities in I2, and the two inequalities are called
epipolar inequalities.

The following steps identify the epipolar inequalities for a given q1 ∈ K1.

1. Consider the epipolar planes of four vertices vk(q1) (k = 1, 2, 3, 4), and select
two vertices μ(q1) and ν(q1) among the four vertices so that the pyramidal
ray of sight S(q1) is located between the epipolar planes of μ(q1) and ν(q1).

2. Project S(q1) onto I2, and obtain two inequalities from the epipolar lines
EL(μ(q1)) and EL(ν(q1)).

For a pixel q1 ∈ K1, let ṽk(q1) = (vk(q1)�, f1)� (k = 1, 2, 3, 4). We now
represent epipolar planes corresponding to the vertices by

(t × ṽk(q1))�X = 0, (4.2)

Discrete Epipolar Geometry 329

where t is the translation vector from the origin of C1 to that of C2, and X is
the coordinates of a 3D point represented in C1. We then select two of the four
planes between which the pyramidal ray of sight S(q1) is located.

We select a vertex vk(q1) so that the other three vertices vk′(q1)’s (k′ =
1, 2, 3, 4; k′ �= k) are all in one side of the epipolar plane of vk(q1). More
specifically, we select vk(q1) such that all the vk′(q1)’s except for vk(q1) (k′ =
1, 2, 3, 4; k′ �= k) satisfy either (4.3) or (4.4):

(t × ṽk(q1))�ṽk′(q1) ≥ 0, (4.3)
(t × ṽk(q1))�ṽk′(q1) ≤ 0. (4.4)

We note that the number of selected vertices is at least two and that it is two
if and only if the four epipolar planes are different from each other (this occurs
in most cases). In the case where more than two vertices are selected, namely,
the case where two epipolar planes coincide with each other, only two vertices
having different epipolar planes from each other are used. When v1(q1) is one
of the selected vertices, we always use v1(q1) due to the speciality of the vertex
in our digitization of image planes (see Fig. 2).

Let μ(q1) and ν(q1) be the two selected vertices vk(q1)’s where μ(q1) is
the smaller than ν(q1) with respect to k. For μ(q1), we define a function with
respect to p̃2 = (p�

2 , f2)�, i.e., the coordinates of p2 ∈ I2 represented in C2.

hμ(q1)(p̃2) =
{

μ̃(q1)�Ep̃2 if μ(q1) is selected by (4.3),
−μ̃(q1)�Ep̃2 if μ(q1) is selected by (4.4),

where μ̃(q1) = (μ(q1)�, f1)�. In the similar way, we define hν(q1)(p̃2) for ν(q1).
We then have two inequalities that represent the intersection of I2 and the
discrete epipolar plane of q1:

hμ(q1)(p̃2) > 0, (4.5)
hν(q1)(p̃2) > 0.

We call the above two inequalities epipolar inequalities. We remark that if μ(q1) =
v1(q1), (4.5) is replaced by

hμ(q1)(p̃2) ≥ 0.

4.3 Discrete Epipolar Line

For a given pixel q1 ∈ K1, the region H(q1) ⊂ I2 satisfying the epipolar inequal-
ities is given by

H(q1) =
{

{p2 ∈ I2 | hμ(q1)(p̃2) > 0, hν(q1)(p̃2) > 0} if μ(q1) �= v1(q1),
{p2 ∈ I2 | hμ(q1)(p̃2) ≥ 0, hν(q1)(p̃2) > 0} otherwise. (4.6)

We digitize the image plane I2 in the same way as (3.2) and obtain K2. We
also define Ω(q2) ⊂ I2 for a pixel q2 ∈ K2 (cf. (3.3)). Then, H(q1) and Ω(q2)
enable us to represent a set of pixels satisfying the epipolar inequalities in K2:

DEL(q1) = {q2 ∈ K2 | H(q1) ∩ Ω(q2) �= ∅}.

330 M. Hamanaka, Y. Kenmochi, and A. Sugimoto

We call DEL(q1) the discrete epipolar line for a pixel q1 ∈ K1. As we see the
discrete epipolar line can be interpreted as the digitization of H(q1).

Though the discrete epipolar line DEL(q1) for a given pixel q1 is defined as a
set of pixels in K2, in its computation we require a processing to be done in the
continuous space I2 because of H(q1)∩Ω(q2). This indicates that straightforward
computing of DEL(q1) is not practical. We present a computationally feasible
algorithm below to compute DEL(q1) from H(q1) where each pixel in K2 is
checked whether it is included in DEL(q1) using epipolar inequalities.

Algorithm 1 [Computing a discrete epipolar line]

Input: H(q1) computed from a given pixel q1 ∈ K1.
Output: A discrete epipolar line DEL(q1) ⊂ K2.
begin

1. Set DEL(q1) to be empty.
2. For each q2 ∈ K2,

2.1. compute four vertices vi(q2) ∈ I2 (i = 1, 2, 3, 4);
2.2. switch μ(q1)

case μ(q1) �= v1(q1): if at least one vi(q2) exists that satisfies
hμ(qi)(ṽi(q2)) > 0, where ṽi(q2) = (vi(q2)�, f2)� (i = 1, 2, 3, 4);
case μ(q1) = v1(q1): if at least one vi(q2) exists that satisfies
hμ(qi)(ṽi(q2)) > 0 (i = 2, 3, 4) or hμ(q1)(ṽ1(q2)) ≥ 0;

2.2.1. if at least one vi(q2) exists that satisfies hν(q1)(ṽi(q2)) > 0 then
put q2 into DEL(q1).

3. Compute4 e2 such that hμ(q1)(ẽ2) = 0 and hν(q1)(ẽ2) = 0, where ẽ2 =
(e�

2 , f2)�.
4. If e2 ∈ I2 then

4.1. obtain the digitization of e2; let the digitization be ε2 ∈ K2;
4.2. if we obtain two connected components D1 and D2 in DEL(q1)

when we remove ε2 from DEL(q1) then
4.2.1. q2 = ε2;
4.2.2. while q2 = ε2 do for s ≥ 1

let a 3D point be P = s(v1(q1)�, f1)�; represent P in the sec-
ond camera coordinate system C2 and obtain the pixel q2 that
represents its image point in I2 (cf. (3.4));

4.2.3. select a Dk (k = 1, 2) that includes q2, and set DEL(q1) =
Dk ∪ {ε2}.

5. Return DEL(q1).
end

We see that discrete epipolar lines enjoy the following properties.

Property 1. For a pixel nearby an epipole, its discrete epipolar line dominates a
wider region, while it does a small region for a pixel far from an epipole.

4 e2 is knows as an epipole.

Discrete Epipolar Geometry 331

Property 2. For the pixel including an epipole in an image, its discrete epipolar
line in the other image expands into the whole image.

We denote by V1 and V2 the 3D spaces in R3 observable by two given
cameras with their positions and orientations. For a 3D point P in V1 ∩ V2,
we let q1 and q2 be the pixels in K1 and K2 representing its image points. We
call such a pair of pixels q1 and q2 corresponding pixels with respect to P as
a counterpart of corresponding points in the conventional framework. We see
that the discrete epipolar line gives a constraint on pairs of corresponding pixels
across K1 and K2.

Proposition 2. For a pixel q1 ∈ K1, its corresponding pixel in K2, if exists, is
included in DEL(q1).

Corollary 1. For any pair of corresponding pixels, their pyramidal rays of sight
always have a non-empty intersection in V1 ∩ V2.

In the conventional framework, for a point p1 ∈ I1, a point p2 ∈ I2 satisfying
the epipolar equation (2.2) is selected as its corresponding point. In practice,
however, what we can deal with are not the points p1 and p2 but the pixels
q1 and q2, digitization of p1 and p2. We thus have to select one point from q1
and one point from q2, and then apply triangulation to the selected points to
reconstruct a 3D point. The rays of sight obtained in such a way do not always
meet in the 3D space [6]. In that case, we cannot reconstruct any point in space
as the intersection of the rays of sight. In our framework, on the other hand,
the pyramidal rays of sight for any pair of corresponding pixels do have their
non-empty intersection in the 3D space even if digitization errors exist. That is,
in the framework of the discrete epipolar geometry, a non-empty region in the
3D space does exist that is reconstructed from any pair of corresponding pixels.

5 3D Reconstruction and Its Experiment

5.1 3D Reconstruction from Corresponding Pixels

In the conventional epipolar geometry, we reconstruct a point in space from a
pair of corresponding points as the intersection of their rays of sight. In our
discrete epipolar geometry, however, a pair of corresponding pixels provides a
polyhedron as the intersection of their pyramidal rays of sight.

Let q1 ∈ K1 and q2 ∈ K2 be a pair of corresponding pixels, and V1 and
V2 be the 3D spaces observable from the first and second cameras, respectively.
Their pyramidal rays of sight S1(q1) ⊂ V1 and S2(q2) ⊂ V2 are then given,
similarly to (4.1), by

S1(q1) = { X1 ∈ V1 |
(ṽ1(q1) × ṽ2(q1))�X1 ≥ 0, (ṽ2(q1) × ṽ3(q1))�X1 > 0,

(ṽ3(q1) × ṽ4(q1))�X1 > 0, (ṽ4(q1) × ṽ1(q1))�X1 ≥ 0}, (5.1)

332 M. Hamanaka, Y. Kenmochi, and A. Sugimoto

S2(q2) = { X1 ∈ V2 | X1 = RX2 + t,

(ṽ1(q2) × ṽ2(q2))�X2 ≥ 0, (ṽ2(q2) × ṽ3(q2))�X2 > 0,

(ṽ3(q2) × ṽ4(q2))�X2 > 0, (ṽ4(q2) × ṽ1(q2))�X2 ≥ 0},(5.2)

where ṽi(q1) = (vi(q1)�, f1)�, ṽi(q2) = (vi(q2)�, f2)� (i = 1, 2, 3, 4), and R and
t are a rotation matrix and a translation vector relating the coordinates in C1
and C2. We remark that X1 in (5.2) is the coordinates of a 3D point represented
in C1 while X2 is the coordinates of the same point represented in C2. This is
because the coordinate transformation between C1 and C2 is required to obtain
the intersection of S1(q1) and S2(q2) as the sets of points in space represented
in the same coordinate system C1.

For a pair of corresponding pixels, q1 ∈ K1 and q2 ∈ K2, the triangulation
reconstructs the intersection of their pyramidal rays of sight:

F = S1(q1) ∩ S2(q2). (5.3)

(5.3) indicates that in our formulation, reconstructed is the polyhedron that
consists of all possible points in space though which rays of sight of any points
in the two corresponding pixels pass.

Proposition 3. From any pair of corresponding pixels, a polyhedron bounded
by at most eight planes is reconstructed. The polyhedron is a set of points in
space satisfying the eight inequalities (5.1) and (5.2).

5.2 Experiments

We assume that the following parameters of two cameras are known: the rotation
matrix R and the translation vector t relating the coordinates in C1 and C2, the
focal lengths f1 and f2 of the two cameras, and the resolutions 1/r1x and 1/r1y of
the x- and y-coordinates on I1, and 1/r2x and 1/r2y of the x- and y-coordinates
on I2. For a given point P ∈ V1 ∩V2, we have the unique pair of corresponding
pixels q1 ∈ K1 and q2 ∈ K2, as given in (3.4). We here reconstruct a polyhedron
F(P) from (5.3) using our discrete epipolar geometry.

To the 3D point P � = (0, 0, 100)� in C1, we reconstructed F(P �) under three
different parameters given below.
Parallel camera position:

R =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , t =

⎡⎣ 0
0

100

⎤⎦ , f1 = f2 = 50, 1
r1x

= 1
r1y

= 1
r2x

= 1
r2y

= 1.

Orthogonal camera position:

R =

⎡⎣0 0 −1
0 1 0
1 0 0

⎤⎦ , t =

⎡⎣100
0

100

⎤⎦ , f1 = f2 = 50, 1
r1x

= 1
r1y

= 1
r2x

= 1
r2y

= 1.

Orthogonal camera position with low image resolution:
the parameters are the same as the above orthogonal camera position except
for the image resolutions: 1

r1x
= 1

r1y
= 1

r2x
= 1

r2y
= 0.5.

Discrete Epipolar Geometry 333

light axis
camera 1

light axis

camera 1
light axis
camera 1

(a) (b) (c)

Fig. 5. Reconstructed polyhedra F(P �) for the point P � = (0, 0, 100)� under the
parallel (a) and the orthogonal (b,c) camera positions. The image resolution of (c) is
lower than that of (b)

Figure 5 shows the reconstructed polyhedra F(P �) under each camera position.
Note that we digitized the 3D space by voxels with sufficiently higher resolution5

than the image resolutions and that F(P �) is represented by a set of voxels whose
centroids satisfy eight inequalities of (5.1) and (5.2). Voxels observed in Fig. 5
are, therefore, due to the 3D-space digitization.

We see that the shape and size of F(P �) depend on the camera parameters.
Reconstructed F(P �)’s in (a) and (b) in Fig. 5 are almost the same in size

while they are quite different in shape. When two cameras are with the parallel
position where two principal axes are parallel with each other (Fig. 5 (a)), the
shape of F(P �) expands to the direction of the principal axes. That is, larger
ambiguity in reconstruction exists in the direction of the principal axes than that
in the baseline direction. When two cameras are with the orthogonal position
where two principal axes are orthogonal with each other, on the other hand,
the shape of F(P �) does not expand to the direction of the principal axes. This
implies that relative position and orientation between two cameras plays an
important role in ambiguity in reconstruction.

When we compare F(P �)’s in (b) and (c) in Fig. 5, we see that even with
the same position and orientation in setting up two cameras, image resolution
affects preciseness in reconstruction. The higher the image resolution becomes,
the better preciseness in reconstruction becomes. We note that a smaller size of
F(P �) indicates that P � is more precisely reconstructed. This is because F(P �)
provides us with the possible locations for P � reconstructed from q1 and q2.

We finally remark that similar discussion on error analysis in 3D reconstruc-
tion can be found, for example, in [2, 11], where statistical analysis based on the
conventional epipolar geometry is used. Employed statistical models, however,
can be applied to only the case of the parallel camera position above. In contrast,
the proposed discrete epipolar geometry enables us to investigate errors incurred
in 3D reconstruction under general camera parameter setting.

5 In our experiments, 3D space resolution is 10 times as high as image resolutions.

334 M. Hamanaka, Y. Kenmochi, and A. Sugimoto

6 Conclusions

We focused, in this paper, on pixels as the smallest unit of images rather than
points and established the discrete epipolar geometry, i.e., a discrete version
of the conventional epipolar geometry. To be more specific, we introduced a
pyramidal ray of sight and a discrete epipolar line as counterparts of a ray of
sight and an epipolar line, and gave their mathematical descriptions. We also
presented some experiments of 3D reconstruction using the discrete epipolar
geometry.

The conventional epipolar geometry, which is widely used so far, is formulated
in continuous image planes, while the discrete epipolar geometry is in discrete
image planes. The smallest unit of digital images is not a point but a pixel. This
motivated us to restructure geometric relationships on points between multi-
ple views so that they hold in terms of pixels. The discrete epipolar geometry
introduced in this paper is a first step to such a direction and opens a new
framework that is capable to discriminate digitization errors from observation
errors in handling digital images.

Acknowledgements. This work is in part supported by Grant-in-Aid for Sci-
entific Research of the Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan under the contract of 14380161 and 16650040.

References

1. E. Andres: Discrete Linear Objects in Dimension n:the Standard Model, Graphical
Models, Vol. 65, pp. 92–111, 2003.

2. S. D. Blostein and T. S. Huang: Error Analysis in Stereo Determination of 3-D
Point Positions, IEEE Trans. on PAMI, Vol. 9, No. 6, pp. 752-765, 1987.

3. O. Faugeras: Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT
Press, 1993.

4. D. Forsyth and J. Ponce: Computer Vision: A Modern Approach, Prentice Hall,
2002.

5. R. Furukawa and H. Kawasaki: Error Analysis of 3D Measurement System Based
on Sensitivity of Measuring Conditions, Proc. of ACCV, Vol. 2, pp. 664-669, 2004.

6. R. Hartley and P. Sturm: Triangulation, CVIU, Vol. 68, No. 2, pp. 146-157, 1997.
7. R. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision, Cam-

bridge Univ. Press, 2000.
8. K. Kanatani: Statistical Optimization for Geometric Computation: Theory and

Practice, Elsevier, 1996.
9. P. Meer, D. Mintz, D. Y. Kim and A. Rosenfeld: Robust Regression Methods in

Computer Vision, Int. J. of Computer Vision, Vol. 6, pp. 59–70, 1991.
10. U. Montanari: On Limit Properties in Digitization Schemes, Journal of ACM, Vol.

17, No. 2, pp. 348–360, 1970.
11. J. J. Rodriguez and J. K. Aggarwal: Stochastic Analysis of Stereo Quantization

Error, IEEE Trans. on PAMI, Vol. 12, No. 5, pp. 467-470, 1990.
12. C. V. Stewart: Robust Parameter Estimation in Computer Vision, SIAM Reviews,

Vol. 41, No. 3, pp. 513-537, 1999.

Local Point Configurations of Discrete
Combinatorial Surfaces

Yukiko Kenmochi1 and Yusuke Nomura2

1 UMR 8049 - IGM, CNRS/University of Marne-la-Vallée/ESIEE, France
2 Department of Information Technology, Okayama University, Japan

y.kenmochi@esiee.fr

Abstract. Representing discrete objects by polyhedral complexes, we
study topological properties of boundary points and surface points. We
then obtain the local point configurations of discrete surfaces which are
also considered to be boundaries of discrete objects.

1 Introduction

Surface structures are often used in the three-dimensional image analysis, for
example, an active balloon which is a deformable surface for the image segmen-
tation [2]. In many cases, a continuous surface such as a spline surface is applied
to a deformable surface and after its deformation it is rediscretized to be a dis-
crete object in a digital image. Obviously, this is not efficient if the input and
output are both discrete. To construct completely discrete methods similarly to
reference [4], we study discrete surfaces and their local point configurations such
as those in the 3 × 3 × 3 region in this paper as our first step.

In our previous work [10], we presented a boundary tracking algorithm which
provides a triangulation of a set of boundary points given by

Brm(V) = {x ∈ V : Nm(x) ∩ V �= ∅}

where V is the input, i.e., a discrete object in a three-dimensional image and V is
the complement. Nm(x) is the m-neighborhood of a point x = (i, j, k) in a three-
dimensional discrete space Z3, consisting of lattice points whose coordinates are
all integers in R3, defined by

Nm(x) = {(p, q, r) ∈ Z3 : (i − p)2 + (j − q)2 + (k − r)2 ≤ t}

where t = 1, 3 for m = 6, 26 respectively. Because we apply discrete polyhedral
complexes [10] based on combinatorial topology [1, 12, 13] to object representa-
tion, we can obtain topologies for boundary points. With a help of the topologies,
we found that our boundary points include not only surface points, i.e., points
on combinatorial 2-manifold, but also non-surface points, i.e., singular points,
as shown in Fig. 1. In this paper, we use local topological notions similarly to
our work [8] to discriminate boundary points and also surface points. Such no-
tions enable us to present an algorithm to count the local point configurations
of discrete surfaces for the 6- and 26-neighborhood systems.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 335–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

336 Y. Kenmochi and T. Nomura

Fig. 1. Examples of point configurations in the 3 × 3 × 3 region so that the central
point is considered to be a boundary point [10]; a surface point (left), a surface point
but not a simplicity surface point [3] (center), and a non-surface point, i.e., a singular
point (right)

Fig. 2. The 6 local configurations of 3×3×3 points for discrete combinatorial surfaces
in the 6-neighborhood system

For the 6-neighborhood system, the definition of discrete combinatorial are
given by Françon in [5] and he showed that there are 6 local configurations of
discrete surfaces for the 6-neighborhood system as illustrated in Fig. 2. Note that
the similar results are obtained by using different approaches, for example, in [7].
The discrete deformation model based on such discrete surface configurations for
6-neighborhood system is also presented in [4].

In [5], however, the 26-neighborhood is not practically treated so that we do
not see how to generate discrete combinatorial surfaces for the 26-neighborhood
system, Morgenthaler et al. defined discrete surfaces by using the point connec-
tivity based on the Jordan surface theorem; any Jordan surface divides the space
into two [11]. In [3], Couprie et al. pointed out that, for the 26-neighborhood
system, Morgenthaler’s discrete surfaces have only 13 local point configurations
while their discrete surfaces, called simplicity surfaces, have 736 configurations.
However, we see that even simplicity surfaces do not give enough configurations
if we would like to treat our boundary points. For example, we obtain a boundary
point as illustrated in Fig. 1 (center) which is not considered to be a simplicity
surface.

In this paper, we show that the surface configurations which appear on our
boundaries for the 6-neighborhood system are the same 6 configurations as il-
lustrated in Fig. 2 and derive new results of surface configurations for the 26-
neighborhood system. We also discuss the utilities of such study on local point
configurations of discrete surfaces for three-dimensional shape analysis.

2 Discrete Polyhedral Complexes

2.1 Definitions

In combinatorial topology, any object in a 3-dimensional Euclidean space R3 is
represented by a set of simplexes [1, 12] or more generally convex polyhedra [1,
13]. We construct convex polyhedra whose vertices are lattice points in Z3. Such

Local Point Configurations of Discrete Combinatorial Surfaces 337

Table 1. All possible discrete convex polyhedra for the 6- and 26-neighborhood systems

discrete convex polyhedra
N 6 N26

3

2

1

0

dim.

convex polyhedra are called discrete convex polyhedra, and a discrete polyhedral
complex is constructed as a set of discrete convex polyhedra combined together
without contradiction [10].

Let us consider a set of eight lattice points which are the vertices of a unit
cube. Setting a value of each point to be 1 or 0 and calling such a point 1-
or 0-point, we obtain 28 different 1-point configurations in a unit cube. Up to
symmetries and rotations, the number of different configurations becomes 23.
For each configuration which has at least one 1-point in a unit cube, we make a
convex hull of 1-points and call it a discrete convex polyhedron.

Definition 1. If a convex hull of 1-points in a unit cube has n dimensions where
n = 0, 1, 2, 3 and its adjacent vertices are m-neighboring for m = 6, 26, such a
convex hull is called an n-dimensional discrete convex polyhedron for the m-
neighborhood system.

Table 1 shows n-dimensional discrete convex polyhedra, n = 0, 1, 2, 3, for the
6- and 26-neighborhood systems. Hereafter, we abbreviate n-dimensional discrete
convex polyhedra to n-polyhedra. The face of an r-polyhedron σ is defined to be
the set of all s-polyhedra which are included in the boundary of σ where s < r,
denoted by face(σ). For example, we see in Table 1 that a 3-polyhedron for the
6-neighborhood system includes eight 0-polyhedra, twelve 1-polyhedra, and six
2-polyhedra. By using faces, we define discrete polyhedral complexes.

Definition 2. A discrete polyhedral complex K is the set of discrete convex
polyhedra satisfying the following conditions:

1. ∅ ∈ K;
2. if σ ∈ K, face(σ) ⊂ K;
3. if σ, τ ∈ K, σ ∩ τ = ∪a∈face(σ)∩face(τ) a.

338 Y. Kenmochi and T. Nomura

Fig. 3. Non-pure (left) and pure (right) 3-complexes

The dimension of K is defined as the maximum dimension of discrete con-
vex polyhedra belonging to K. Hereafter, we abbreviate an n-dimensional dis-
crete polyhedral complex to an n-dimensional discrete complex or simply an
n-complex. We will present several properties of discrete complexes.

Definition 3. Let K be an n-complex. If we have at least one n-polyhedron
σ ∈ K for every s-polyhedron τ ∈ K where s < n satisfying τ ∈ face(σ), then
K is said to be pure.

Figure 3 shows examples of pure and non-pure discrete complexes. The 3-
complex in Fig. 3 (left) is not pure because it includes 0-, 1- and 2-polyhedra
which do not belong to any 3-polyhedra. If we remove these 0-, 1- and 2-
polyhedra from Fig. 3 (left), we obtain a pure 3-complex in Fig. 3 (right).

Definition 4. Let K be a discrete complex. The combinatorial closure of a sub-
set K0 ⊂ K is defined as

Cl(K0) = K0 ∪ (∪
a∈K0

face(a)).

Definition 5. Let K be a discrete complex, and σ, τ be arbitrary elements in
K. We say that K is connected, if we have a path σ = a1, a2, . . . , τ = an which
satisfies the following conditions:

1. ai ∈ K for every i = 1, 2, . . . , n;
2. Cl({ai}) ∩ Cl({ai+1}) �= ∅ for every i = 1, 2, . . . , n − 1.

2.2 Discrete Complex Construction from a Lattice Point Set

The goal of this paper is to count the number of local configurations of boundary
points which form discrete surfaces, in a 3 × 3 × 3 region N26(x) of Z3 by using
topological properties of discrete complexes presented in the next section. Before
obtaining topological properties, thus, we need to construct a discrete complex
Km for m = 6, 26 from a subset V ⊆ N26(x) where all points in V (resp. the
complement V) are 1-points (resp. 0-points). Given a V ⊆ N26(x), we briefly
explain how to construct a discrete complex Km for each m = 6, 26.

Let us first consider the case of m = 26. From Definition 1, dividing a 3×3×3
region N26(x) into eight 2×2×2 unit cubic regions, we obtain a discrete convex
polyhedron by constructing a convex hull of 1-points in each unit cubic region.
From Definition 2, collecting all discrete convex polyhedra for eight unit cubic
regions, we finally obtain a discrete complex K26 such as a set of all discrete
convex polyhedra and their faces.

For the case of m = 6, we only consider convex hulls whose adjacent vertices
are all 6-neighboring, and obtain a discrete complex K6 similarly to K26. The
details and the precise algorithm are presented in reference [10].

Local Point Configurations of Discrete Combinatorial Surfaces 339

3 Point Classification by Combinatorial Topology

In Z3, discrete complexes whose dimensions are from zero to three can exist. In
this section, we first present topological properties of discrete complexes for each
dimension from one to three by using the notions of star and link [13] similarly
to the previous work [8]. By the topological properties, we classify all points in
the skeleton of K, denoted by Sk(K), which is the set of vertices of all discrete
convex polyhedra in K, and find out the topological type of boundary points
which are considered to be on discrete surfaces.

3.1 Star and Link

The star and the link are defined for each vertex in a discrete complex as follows.

Definition 6. For a discrete complex K, the star of a point x ∈ Sk(K) is
defined so that

star(x) = {σ ∈ K : x ∈ σ}.

Definition 7. For a discrete complex K, the link of a point x ∈ Sk(K) is
defined so that

link(x) = Cl(star(x)) \ star(x).

The star and link with respect to K are denoted by star(x : K) and link(x :
K), respectively, when we emphasize K. Similarly to discrete complexes, we
define the dimension of star(x : K) as the maximum dimension of discrete
convex polyhedra belonging to star(x : K) and denoted by dim(star(x : K)).
Note that star(x : K) is not always a discrete complex because it may not
satisfy the second condition in Definition 2. On the other hand, link(x : K)
always becomes a discrete complex and even pure if K is pure.

3.2 Topological Properties in One Dimension

If a 1-complex K is pure, stars of points in Sk(K) are classified into the following
three types: linear stars, semi-linear stars, and neither of them. Let |A| be the
number of elements in a set A.

Definition 8. Let K be a pure 1-complex. If |link(x)| = 2, star(x) is called
linear.

Definition 9. Let K be a pure 1-complex. If |link(x)| = 1, star(x) is called
semi-linear.

Figure 4 illustrates points whose stars are linear, semi-linear and neither of
them. We see that a point is an endpoint of a curve if its star is semi-linear,
and an intermediate point of a curve if its star is linear. If the star of a point is
neither linear nor semi-linear, it is an intersection of a curve. By using the above
definitions, we define discrete curves in Z3.

340 Y. Kenmochi and T. Nomura

Fig. 4. Examples of points whose stars are linear, semi-linear and neither of them,
illustrated as white, grey and black points, respectively

Definition 10. Let K be a connected and pure 1-complex. If the star of every
point in Sk(K) is either linear or semi-linear and at least one point whose star
is semi-linear exists in Sk(K), K is called a discrete curve with endpoints.

Definition 11. Let K be a connected and pure 1-complex. If the star of every
point in Sk(K) is linear, K is called a discrete closed curve.

3.3 Topological Properties in Two Dimensions

If a 2-complex K is pure, stars of points in Sk(K) are classified into the following
three types: cyclic stars, semi-cyclic stars, and neither of them.

Definition 12. Let K be a pure 2-complex. If link(x) is a discrete closed curve,
star(x) is cyclic.

Definition 13. Let K be a pure 2-complex. If link(x) is a discrete curve with
endpoints, star(x) is semi-cyclic.

Figure 5 illustrates points of stars which are cyclic, semi-cyclic and nei-
ther of them. We see that a point is an edge point of a surface if its star is
semi-cyclic, and an interior point of a surface if its star is cyclic. If the star
of a point is neither cyclic nor semi-cyclic, the point is at an intersection of
surfaces. What we call local surface structures or configurations in this paper
are, thus, cyclic stars. By using these properties, we define discrete surfaces in
Z3.

Definition 14. Let K be a connected and pure 2-complex. If the star of every
point in Sk(K) is either cyclic or semi-cyclic, and at least one point whose star
is semi-cyclic exists in Sk(K), K is called a discrete surface with edges.

Definition 15. Let K be a connected and pure 2-complex. If the star of every
point in Sk(K) is cyclic, K is called a discrete closed surface.

We see that discrete closed surfaces are considered to be 2-dimensional dis-
crete combinatorial manifolds as presented in reference [5].

Fig. 5. Examples of points whose stars are cyclic, semi-cyclic and neither of them,
illustrated as white, grey and black points, respectively

Local Point Configurations of Discrete Combinatorial Surfaces 341

Fig. 6. Examples of points whose stars are spherical, semi-spherical and neither of
them, illustrated as white, grey and black points, respectively

3.4 Topological Properties in Three Dimensions

If a 3-complex K is pure, stars of points in Sk(K) are classified into the following
three types: spherical stars, semi-spherical stars, and neither of them.

Definition 16. Let K be a pure 3-complex. If link(x) is a discrete closed sur-
face, star(x) is spherical.

We define semi-spherical stars by using the notion of combinatorial boundary
given by Definition 4.

Definition 17. Let K be a pure n-complex and H be the set of all (n − 1)-
polyhedra in K each of which is a face of exactly one n-polyhedron in K. The
combinatorial boundary of K is then defined as a pure (n − 1)-complex such
that

∂K = Cl(H).

We now see that the endpoints of a discrete curve and the edges of a discrete
surface in Definitions 10 and 14 are their combinatorial boundaries.

Definition 18. Let K be a connected and pure 3-complex. If link(x) is a dis-
crete surface with edges, and the edges, i.e., the combinatorial boundary ∂(link(x))
is a discrete closed curve, then star(x) is semi-spherical.

Figure 6 illustrates points whose stars are spherical, semi-spherical and nei-
ther of them. It shows that points whose stars are spherical and non-spherical
considered to be interior and boundary points of a 3-complex, respectively. If
the stars of boundary points are not semi-spherical, such points are considered
to be singular points, i.e., intersection points of the boundaries.

In the previous work [8], star(x) is simply defined to be semi-spherical if
link(x) is a discrete surface with edges. However, we found a counter-example
such as a white central point in Fig. 7 (left); its link is a discrete surface with
two combinatorial boundaries, and its star should not be regarded as a semi-
spherical star because it is not topologically equivalent to a semi-sphere. We
therefore modify our definition of semi-spherical stars.

Such modification enables us to prove the following important proposition.

Proposition 1. Let K be a pure 3-complex. If star(x : K) is semi-spherical,
then star(x : ∂K) is cyclic.

342 Y. Kenmochi and T. Nomura

Fig. 7. An example of a point whose star is considered to be semi-spherical with our
previous definition in [8], but not semi-spherical with that in this paper, illustrated as
the white point in the left figure. Its link and its combinatorial boundary are illustrated
as a half-tone region and two black bold closed curves in the right figure

Before proving this proposition, we first derive the next lemma.

Lemma 1. Let K be a pure 3-complex. If star(x : K) is semi-spherical, then

∂(link(x : K)) = link(x : ∂K).

(Proof) From Definitions 7 and 17 (or 18), we see that both ∂(link(x : K))
and link(x : ∂K) are pure 1-complexes. Thus, we need to prove simply for
1-polyhedra σ that σ ∈ link(x : ∂K) if and only if σ ∈ ∂(link(x : K)).

Let σ be each 1-polyhedron in ∂(link(x : K)). Then σ is a face of some
2-polyhedron τ in star(x : K). In star(x : K), we have two different types of
2-polyhedra τ such that τ ∈ ∂K or τ /∈ ∂K. Now, we show that τ ∈ ∂K if
σ ∈ ∂(link(x : K)) by proving its contraposition. If τ /∈ ∂K, τ becomes a shared
face of two 3-polyhedra in star(x : K), therefore σ becomes a shared face of
two 2-polyhedra in link(x : K). This means that σ /∈ ∂(link(x : K)). Because
τ ∈ star(x : K) and τ ∈ ∂K, τ ∈ star(x : ∂K). Therefore, if σ ∈ ∂(link(x : K)),
σ ∈ link(x : ∂K).

Next, we show that σ ∈ ∂(link(x : K)) if σ ∈ link(x : ∂K) contrarily.
For any 1-polyhedron σ ∈ link(x : ∂K), we have a 2-polyhedron τ ∈ ∂K such
that σ ∈ face(τ). Such τ is in star(x : K), and it is not a shared face of two
3-polyhedra in star(x : K) but there is exactly one 3-polyhedron υ such that
τ ∈ face(υ). Therefore, σ is not a shared face of two 2-polyhedra in link(x : K),
and from Definition 17, σ ∈ ∂(link(x : K)). (Q.E.D.)

(Proof of Proposition 1) From Definition 18, if star(x : K) is semi-spherical,
∂(link(x : K)) is a discrete closed curve. We then obtain from Lemma 1 that
link(x : ∂K) is also a discrete closed curve. Thus, from Definition 12, star(x :
∂K) is cyclic. (Q.E.D.)

3.5 Topological Point Classification

By using topological properties defined above, we classify points x ∈ Sk(K) into
the following twelve types. Note that each point in Sk(K) is classified into one
of them.

Type 0: dim(star(x)) = 0;
Type 1a: dim(star(x)) = 1 and star(x) is linear;
Type 1b: dim(star(x)) = 1 and star(x) is semi-linear;

Local Point Configurations of Discrete Combinatorial Surfaces 343

Type 1c: dim(star(x)) = 1 and star(x) is neither linear nor semi-linear;
Type 2a: dim(star(x)) = 2, Cl(star(x)) is pure and star(x) is cyclic;
Type 2b: dim(star(x)) = 2, Cl(star(x)) is pure and star(x) is semi-cyclic;
Type 2c: dim(star(x)) = 2, Cl(star(x)) is pure and star(x) is neither cyclic

nor semi-cyclic;
Type 2d: dim(star(x)) = 2 and Cl(star(x)) is not pure;
Type 3a: dim(star(x)) = 3, Cl(star(x)) is pure and star(x) is spherical;
Type 3b: dim(star(x)) = 3, Cl(star(x)) is pure and star(x) is semi-spherical;
Type 3c: dim(star(x)) = 3, Cl(star(x)) is pure and star(x) is neither spheri-

cal nor semi-spherical;
Type 3d: dim(star(x)) = 3 and Cl(star(x)) is not pure.

Our discrete surfaces are considered to appear at the 2-dimensional com-
binatorial boundaries of 3-complexes, that is, ∂K where dim(K) = 3. From
Proposition 1, we see that our points of interest whose local point configurations
form discrete surfaces have type 3b.

4 Local Point Configurations of Discrete Surfaces

Let us consider a 1-point x ∈ Z3 with a set V of its neighboring 1-points in
N26(x) and a discrete complex Km, for m = 6, 26, constructed from V ⊆ N26(x)
as explained in the subsection 2.2. In this section, we present an algorithm for
examining whether x is a boundary point considered to be on a discrete surface,
i.e., star(x : ∂K) is cyclic or star(x : K) is semi-spherical, for a given set
V. It means that we check if the type of x is 3b. We apply it for all possible
configurations of V to count the number of local point configurations which form
discrete surfaces.

4.1 Algorithm

Setting the value of x to be 1, for any configuration of a 1-point set V ⊆ N26(x),
we apply the following algorithm which returns 1 if x is type 3b.

Algorithm 1

Input: A 1-point set V in a 3 × 3 × 3 region of Z3.
Output: If the central point x has type 3b, return 1, otherwise, return 0.
begin

1. construct Km from V choosing m = 6 or 26;
2. obtain star(x : Km);
3. if dim(star(x : Km)) �= 3 then return 0;
4. if Cl(star(x : Km)) is not pure then return 0;
5. if star(x : Km) is semi-spherical then return 1;

else return 0;
end

344 Y. Kenmochi and T. Nomura

Fig. 8. Two different discrete complexes K26 (left) and K′
26 (right) around the central

points x so that star(x : ∂K26) = star(x : ∂K′
26)

4.2 Experiments

By using Algorithm 1, we count the 1-point configurations of V, namely Sk(Km),
where the central point x is type 3b. They are called surface complicial config-
urations. Up to rotations and symmetries, the number of all 1-point configura-
tions of V is reduced to 1, 426, 144 from 226 = 67, 108, 864. Among them, we
obtain 14, 031 and 290, 979 surface complicial configurations for the 6- and 26-
neighborhood systems, respectively. We also consider the point configurations
of Sk(Cl(star(x : ∂Km)) where x is type 3b to see only the surface structures
around x, that is star(x : ∂Km). They are called surface star configurations.
We then see that there are different discrete complexes Km and K′

m such that
star(x : ∂Km) = star(x : ∂K′

m), as illustrated in Fig. 8, and they have the same
surface star configurations. We count surface star configurations and finally ob-
tain 6 and 6, 028 for m = 6, 26, respectively.

5 Conclusions

Given a subset V ⊆ N26(x), we presented a method for classifying the central
point x into one of the twelve types by the topological property of its star after
obtaining a complex Km. With our conclusion such that the type of points
which are boundary points having local point configurations of discrete surfaces
is 3b, we counted surface complicial configurations Sk(Km) and obtained 14,031
and 290,979 configurations for m = 6, 26 up to symmetries and rotations. We
also obtained 6 and 6,028 surface star configurations, namely, Sk(Cl(star(x :
∂Km))), for m = 6, 26. The same result for m = 6 is already presented in
reference [5] and they are illustrated in Fig. 2. We see that a boundary point
illustrated as the central point in Fig. 1 (center) has a surface star configuration.
This explains why our discrete surfaces have more configurations than that of
simplicity surfaces [3].

References [6, 9] show that there are 5 and 32 different configurations of stars
which appear in discrete combinatorial planes for m = 6, 26, respectively. Such
planar stars for m = 6 are shown as the five left configurations in Fig. 2. We
also illustrate the 32 configurations of planar stars for m = 26 in Fig. 9. Note
that oriented surfaces are considered in [6, 9] and the 8 and 34 configurations
are obtained for m = 6, 26. While there is only one non-planar star for m = 6,
we see that, for m = 26, most of the 6, 028, namely 5, 994 surface stars are
non-planar and they do not appear on discrete planes but appear on discrete
non-planar surfaces. Figure 10 shows that, for example, every boundary point

Local Point Configurations of Discrete Combinatorial Surfaces 345

Fig. 9. The 32 local star configurations which appear in discrete combinatorial planes
for the 26-neighborhood system

Fig. 10. Boundary points of three-dimensional digitized objects, such as a cube and a
sphere are classified into two types in the 26-neighborhood system: they are illustrated
as white and black points if the stars are planar and non-planar, respectively

appearing at the faces of a digitized cube has one of the 32 planar stars illus-
trated in Fig. 9. On the other hand, around the vertices and edges of a digitized
cube, boundary points have non-planar stars. Figure 10 also shows that many
boundary points on non-planar surfaces such as a sphere have planar stars rather
than non-planar stars. From such experiments, we consider that the study on
local configurations of boundary points in the 26-neighborhood system might
be useful for shape analysis of three-dimensional images. We remark that the
similar shape analysis may not be worth doing for the 6-neighborhood system
because most of all boundary points of three-dimensional digitized objects have
planar stars.

Acknowledgements. A part of this work was supported by Grant-in-Aid for
Scientific Research of the Ministry of Education, Culture, Sports, Science and
Technology of Japan under the contract of 15700152 and 16650040.

346 Y. Kenmochi and T. Nomura

References

1. P. S. Alexandrov, Combinatorial Topology, Vol. 1, Graylock Press, Rochester, New
York, 1956.

2. L. D. Cohen, “On active contour models and balloons,” Computer Vision, Graphics
and Image Processing: Image Understanding, Vol. 53, No. 2, pp. 211-218, 1991.

3. M. Couprie, G. Bertrand, “Simplicity surface: a new definition of surfaces in Z3,”
In Vision Geometry VII, Proceedings of SPIE, Vol. 3454, pp. 40-51, 1998.

4. A. Esnard, J-O. Lachaud, A. Vialard, “Discrete deformable boundaries for 3D im-
age segmentation,” Technical Report No. 1270-02, LaBRI, University of Bordeaux
1, 2002.

5. J. Françon, “Discrete combinatorial surfaces,” Graphical Models and Image Pro-
cessing, Vol. 57, No. 1, pp. 20-26, 1995.

6. J. Françon, “Sur la topologie d’un plan arithmétique,” Theoretical Computer Sci-
ence, Vol. 156, pp. 159-176, 1996.

7. P. P. Jonker, S. Svensson, “The generation of N dimensional shape primitives,” in
LNCS 2886 : Discrete Geometry for Computer Imagery, Proceedings of 11th Inter-
national Conference, DGCI2003, pp.420-433, Springer-Verlag, Heidelberg, 2003.

8. Y. Kenmochi, A. Imiya, A. Ichikawa, “Discrete combinatorial geometry,” Pattern
Recognition, Vol. 30, No. 10, pp. 1719-1728, 1997.

9. Y. Kenmochi, A. Imiya, “Combinatorial topologies for discrete planes”, in LNCS
2886 : Discrete Geometry for Computer Imagery, Proceedings of 11th International
Conference, DGCI2003, pp.144-153, Springer-Verlag, Heidelberg, 2003.

10. Y. Kenmochi, A. Imiya, “Combinatorial boundary tracking of a 3D lattice point
set,” submitted to Journal of Visual Communication and Image Representation.

11. D. G. Morgenthaler, A. Rosenfeld, “Surfaces in three-dimensional digital images,”
Information and Control, Vol. 51, pp. 227-247, 1981.

12. J. Stillwell, Classical Topology and Combinatorial Group Theory, Springer, New
York, 1993.

13. G. M. Ziegler, Lectures on Polytopes, Springer, New York, 1995.

Reversible Polygonalization of a 3D Planar
Discrete Curve: Application on Discrete Surfaces

Isabelle Sivignon1, Florent Dupont2, and Jean-Marc Chassery1

1 Laboratoire LIS,
Domaine universitaire Grenoble - BP46,
38402 St Martin d’Hères Cedex, France
{sivignon, chassery}@lis.inpg.fr

2 Laboratoire LIRIS - Université Claude Bernard Lyon 1,
Bâtiment Nautibus - 8, boulevard Niels Bohr,

69622 Villeurbanne cedex, France
florent.dupont@liris.cnrs.fr

Abstract. Reversible polyhedral modelling of discrete objects is an im-
portant issue to handle those objects. We propose a new algorithm to
compute a polygonal face from a discrete planar face (a set of voxels
belonging to a discrete plane). This transformation is reversible, i.e. the
digitization of this polygon is exactly the discrete face. We show how
a set of polygons modelling exactly a discrete surface can be computed
thanks to this algorithm.

1 Introduction

Since a few years now, many methods have been proposed in order to compute
a polyhedral representation of a discrete object, or more precisely of its surface.
Indeed, such a transformation has many useful properties such as:

– a compression of the discrete data: a polyhedral representation suppresses
the redundancy of the discrete representation;

– modelling of the discrete object
– better visualization, . . .

Two kinds of reconstruction exist: either we only need an approximation of
the discrete surface, or the reversibility of the transformation is desired.

A first naive method consists in computing the convex hull of the discrete
points composing the discrete object. This approach simply needs an efficient
convex hull algorithm, which is a very well known problem (see [1] for instance).
Nevertheless, the polyhedral surface reconstructed is close to the discrete object
only in case of convex, or nearly convex objects.

The Marching-Cubes algorithms [2, 3] are the most popular methods to get a
polyhedral (triangulated in this case) surface from a discrete object. This trans-
formation is reversible along a classical digitization scheme (OBQ). Nevertheless,
this construction is based on local configurations: this induces that the number

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 347–358, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

348 I. Sivignon, F. Dupont, and J.-M. Chassery

of faces of the polyhedral surface depends directly on the number of surface vox-
els of the discrete object. In order to compute a surface composed of a number of
faces not related to the number of discrete points, a global study of the discrete
object geometry is needed.

Then, another class of methods is based on the following outline: first, the
discrete object surface is decomposed into pieces of discrete planes, and second,
a polyhedral representation of the discrete object based on those discrete faces
is computed. Such a framework has been used for instance by Borianne and
Françon in [4] where a pair digitization/reconstruction is proposed. The authors
conjecture that this pair defines a reversible transformation, but this has not
been proven yet. In [5], Françon and Papier also proposed an algorithm based
on this scheme. Nevertheless, in this case, they directly transform the discrete
faces into polygonal non coplanar faces, which is not a satisfactory modelling of
the object.

The last two methods we recall in this short state of the art compute an
approximation of the discrete surface. The first one was proposed by Burguet
and Malgouyres in [6] and uses a “topological Voronoi Diagram”. This diagram
is used in order to decompose the discrete surface into regions, which are tri-
angulated to get the polyhedral representation. Finally, Yu and Klette [7] use
the minimum length polygon algorithm on each slice of the discrete object and
sue those polygons together to obtain an approximation of the discrete object
surface.

The algorithm presented in this paper is based on a segmentation of the
discrete object surface into pieces of discrete planes. We present an algorithm
that computes, for each discrete face, a planar polygon containing the voxels
of the discrete face in its digitization. Such a transformation is achieved via an
analytical modelling of the discrete face, which defines a compact description of
the discrete object itself.

This paper is composed of three sections. In Section 2, we present the gen-
eral framework of our algorithm, defining the notions of discrete plane, surface,
connectivity and segmentation we use together with the dual spaces. The third
section deals with the description of our algorithm and finally, application re-
sults of this algorithm over each discrete face of discrete surfaces are proposed
in Section 4.

2 Framework and Tools

2.1 Preliminaries

First of all, wedefine the frameworkused in this paper.Our algorithmtakes in input
a discrete surface that has already been segmented into pieces of discrete planes.

The definitions of discrete plane and discrete surface used for the segmenta-
tion process are induced by the reconstruction we propose. Indeed, our transfor-
mation defines a discrete polygon (analytical description) from a discrete face
(defined by a set of discrete points). The notion of discrete polygon was intro-
duced by Andrès in [8] using the standard digitization model. This digitization

Reversible Polygonalization of a 3D Planar Discrete Curve 349

(a)

pointel

linel

surfel

voxel

(b)

Fig. 1. (a) Example of a discrete standard plane. (b) Decomposition of a voxel into
lower dimensional elements

scheme is based on the supercover digitization which states that any pixel (or
voxel) crossed by the object belongs to the digitized object. Supercovers may
contain “bubbles”, i.e. many digitization pixels for one point (points with half-
integer coordinates for instance). To cope with that problem, an orientation
convention is defined and leads to the standard digitization scheme.

Consequently, standard planes must be used for the segmentation process. A
standard plane is the thinnest 6-connected discrete plane without tunnels: any
path (6-connected, 18-connected or 26-connected) joining the two background
sides of a plane contains at least one voxel of the plane. An illustration of a
standard plane is given in Figure 1(a).

Concerning the definition of discrete surfaces, two main approaches exist: the
surface elements are either object voxels or object voxels’ faces. In this work, we
will define the object surface as the set of voxels’ faces (called surfels, see Figure
1(b)) belonging to an object and a background voxel. In other words, the surface
is composed of the faces visible when the object is displayed. This definition of
surface is well-adapted for standard planes segmentation: in this case, discrete
(lattice) points are not the object voxels but the vertices of those voxels (called
pointels, see Figure 1(b)). It is easy to see that those vertices are linked along
the 6-connectivity, which is consistent with the use of standard planes.

Using standard planes also induces the connectivities we consider for the ob-
ject. Standard planes have a combinatorial structure of 2-dimensional manifolds
[9, 10]. Thus, the discrete surface we work on should have the properties of a
2D combinatorial manifold as well, which implies that 6-connectivity has to be
considered for the discrete object.

At this point, we have defined all the elements needed for a segmentation pro-
cess: discrete plane and surface, connectivity. Now let us describe the properties
the segmentation must fulfill:

1. pointels adjacent to a common surfel belong to a common discrete face
2. the projection of each discrete face along its main direction (direction given

by the maximum parameter of its normal vector) is a set of 4-connected
pixels

3. each discrete face is homeomorphic to a topological disk.

350 I. Sivignon, F. Dupont, and J.-M. Chassery

(a) (b) (c)

Fig. 2. Example of a segmentation result required for the reconstruction: (a) on a
torus, (b) detail of a discrete face and (c) of its boundary

Those three conditions imply that any discrete face is a combinatorial 2-
manifold with boundary, and that this boundary can be described as a 6-
connected 3D discrete curve.

Figure 2(a) gives an example of the result we get with a segmentation algorithm
fulfillingthosethreeconditions(see[11]).Notethatthetopofthetorusisdecomposed
into two discrete faces instead of one, so that each discrete face is homeomorphic
to a disk. On Figure 2(b), a discrete face is depicted, and each pointel belonging
to this face is marked by a small sphere. The boundary of this discrete face can be
described as a 6-connected curve, as illustrated in Figure 2(c).

2.2 Principle

Since each discrete face is composed of discrete points belonging to a standard
plane, there exist a Euclidean plane crossing all the discrete face points. The
overall algorithm consists in computing for each discrete face f crossed by a
plane p, a polygonal line embedded in p and crossing all the boundary points of
f . This polygonal line defines a polygon containing exactly the discrete points
of f in its standard digitization.

The result of such an algorithm is a set of polygons, one for each discrete
face, such that the standard digitization of each polygon is exactly a standard
face, and finally, the standard digitization of the set of polygons is exactly the
initial discrete object surface.

To compute a polygonal line from a discrete face boundary, we propose the
following outline, that we present in [12] in the case of 2D discrete curves and non
coplanar 3D discrete curves. Consider a 6-connected discrete curve S described
as an ordered set of discrete points {v1, v2, . . . vn}. A Euclidean point r1 is chosen
inside the first point v1, and the following voxels are added one by one (they
define a discrete segment s1) while there exist a Euclidean line going through
r1, through all the voxels of s1 and embedded in the carrier plane p. In other
words, s1 is incrementally extended while:

Reversible Polygonalization of a 3D Planar Discrete Curve 351

– s1 is a 3D discrete segment
– among the lines which contain s1 in their digitization, there exist at least

one line that is embedded in p and that goes through the fixed point r1.

When one of those two conditions is no more fulfilled, the first real segment
endpoint r2 is computed as a common point of the computed line and s1’s last
pixel. The fixed extremity of the next real segment is set to r2 and this process
starts over.

2.3 Dual Spaces and Preimages

Dual Spaces. In order to polygonalize discrete faces boundaries, the question “
does this set of voxels belong to a discrete segment ?” will need an answer, and
one method to solve this problem is to rewrite it in a dual space. The main idea
is that a line in the Euclidean space is represented by a point in the dual space,
and conversely, a point in the Euclidean space corresponds to a line in the dual
space.

This tranformation is very similar to the Hough Transform [13, 14] that is
classically used in image analysis for shape detection problems. The main dif-
ference between the Hough transform and the transform we use here is that the
uncertainty related to the discrete nature of the data is not handled during a
quantification step but during the tranform itself. Many works in discrete geom-
etry use this transform for 2D discrete line or plane recognition [15, 16, 17] but
we will not provide a full state of the art on this point here.

An illustration of the mapping we use is given in Figure 3. Note that in this
figure, the dual representation of the line defined by the equation ax−by+r = 0
is the point (a

b ,
r
b), and thus, that this representation is based on a normalization

along one direction (direction y in this case). Consequently, two dual spaces can

y

x

(x, y)

y

x

1

2

3
4

β

α

(a
b
, r

b
)

y

x

β

α

1
2

3

4 α

β

ax − by + r = 0

αx − y + β = 0

Euclidean space E

Dual space P

Fig. 3. Representation of the links between the Euclidean (top) and the dual spaces
(bottom) for elementary geometric objects

352 I. Sivignon, F. Dupont, and J.-M. Chassery

y

x

z

P

l

E

(a)

β

α

γ

P

E−1(l)

E−1(P)

(b)

Fig. 4. Representation of a 3D line embedded in a plane in the Euclidean (a) and the
dual (b) spaces

be defined in the 2D space, one for each direction. Since line parameters are
represented in dual spaces, those spaces are also called parameter spaces.

Similarly, three dual spaces can be defined in 3D. One plane in the Euclidean
space is represented by one point in the dual space and conversely. One 3D line in
the Euclidean space E is represented by another 3D line in the parameter space
P. In the following, we will denote by E the operator which transforms one
element of the parameter space into its corresponding element in the Euclidean
space.

One important point for this work is how to represent in the parameter space
the embedding of a 3D line into a given plane. It is actually easy to see that since
a 3D line l maps to another 3D line E−1(l) (each point of E−1(l) corresponds
to a plane containing l), and since a plane P maps to the point E−1(P), then l
is embedded in P if and only if E−1(l) goes through E−1(P) (see Figure 4).

Preimages. Consider a set of pixels ε and a digitization scheme D. We call preim-
age of ε the set of Euclidean lines containing ε in their digitization. This set is
represented in the dual space as a set of points.

Let us consider for instance the line l defined by ax− by+ r = 0 where a > 0
and b > 0. Then, the standard digitization of l is the set of discrete points (x, y)
fulfilling the inequalities −a+b

2 ≤ ax − by + r < a+b
2 . The lines containing the

point (x0, y0) in their digitization are those of parameters (α, β) (defined by the
equation αx− y +β = 0) fulfilling the inequalities −α+1

2 ≤ αx0 − y0 +β < α+1
2 .

Thus, each discrete point defines two half-spaces in the parameter space, and the
intersection of those half-spaces is the set of parameters of the lines containing
this discrete point in their digitization. Given a set of discrete points, we call
preimage of this set the convex polygon of the parameter space defined by the
intersection of the constraints related to the discrete points (see Figure 5).

Reversible Polygonalization of a 3D Planar Discrete Curve 353

x

y
z

px

p

py

pz

(a)

β

α

dz

α

β

α

dx

β

dy

IzIx

Iy

(b)

Fig. 5. Recognition of the three projections of a given set of voxels with a fixed point p

3 Reversible Polygonalization of a Planar 3D Discrete
Curve

In this section, we present a new algorithm to compute a polygonal planar curve
from a 3D discrete planar curve in a reversible way. This algorithm is based on
three steps, described in the following three paragraphs.

3.1 Recognition of a 3D Standard Segment

The first step is to define an algorithm to recognize a 3D standard segment, i.e.
the standard digitization of a 3D line segment. A standard discrete line can be
defined in an analytical way:

Definition 1. Let us consider a 3D straight line of directional vector (a, b, c)
going through the point (x0, y0, z0). Then the standard digitization of this line
is the set of integer points fulfilling the conditions given by the following double
inequalities:

− |a|+|b|
2 ≤ bx − ay + ay0 − bx0 < |a|+|b|

2
− |a|+|c|

2 ≤ cx − az + az0 − cx0 < |a|+|c|
2

− |b|+|c|
2 ≤ cy − bz + bz0 − cy0 < |b|+|c|

2

where (b > 0 or (b = 0 and a > 0)) and (c > 0 or (c = 0 and a > 0)) and
(c > 0 or (c = 0 and b > 0)) (otherwise, the strict and large inequalities of those
equations are exchanged, see [8]).

354 I. Sivignon, F. Dupont, and J.-M. Chassery

From this definition, we derive that if a set of voxels is a 3D standard segment,
then the three projections of this set of voxels are 2D standard segments.

Consequently, in order to ensure that the three projections of the set of voxels
are 2D standard segments, we compute the three preimages of those sets of pixels.
If the three preimages are not empty, then this condition is fulfilled, otherwise,
the set of voxels is not a 3D standard segment. Moreover, we said in Paragraph
2.2 that before the recognition step, a point is fixed inside one voxel of the set
considered. Thus, the only lines which are interesting for us are the ones which
go through this fixed point. As illustrated in Figure 5(a), the projection of this
fixed point p onto the three coordinate planes defines three points px, py and pz

that are represented by three lines in the parameter spaces. Thus, the preimages
we work one are no more polygons but simply segments denoted by Ix, Iy and
Iz (see Figure 5(b)).

Nevertheless, this condition over the three projections is not sufficient to
define a 3D standard segment, and a compatibility condition between the pa-
rameters of the three projections needs to be added (see [12], where non planar
curves are studied, for details). In the case of planar curves, this compatibility
condition does not need to be handled since we will see that it is ensured while
considering the embedding of the curve into a plane.

3.2 Ensure Coplanarity

In the following, we consider the general case where the carrier plane P is defined
by the equation ax + by + cz + μ = 0, with a, b and c not equal to zero.

It is easy to see that any of the three preimage segments Ix, Iy and Iz can
be represented in two out of the three dual spaces Px, Py and Pz. Indeed, those
preimage segments are embedded in the planes α = 0 or β = 0 in those dual
spaces. For instance, consider the dual space Px where the two segments Iz and
Iy can be represented. In this space, the carrier plane P is represented by a point
E−1(P). Thus, the 3D lines l embedded in P and containing the set of voxels con-
sidered in their digitization are those such that E−1(l) crosses E−1(P), Iy and Iz.

A reduction process of the segments Iz and Iy according to E−1(P) is done,
as illustrated in Figure 6. The grey cone drawn on this figure represents all the
lines going through one point of Iz and the point E−1(P). Thus, the points of
Iy which do not belong to this cone must be deleted since there does not exist a
line going through Iz, E−1(P) and those points (depicted between brackets on
Figure 6). After the reduction of Iy, the reduction of Iz is computed.

This pair of reductions is computed in each dual space Px, Py and Pz, such
that each preimage Ix, Iy and Iz is reduced twice. Finally, we have the following
result:

Proposition 1. After the six reductions presented above, the preimages of the
three projections of the set of voxels S represent exactly the set of 3D lines that
are solution for S and embedded in the carrier plane.

The proof of this proposition is directly derived from the fact that one point
in the preimage of one of S’ projections defines a unique 3D line in the Euclidean

Reversible Polygonalization of a 3D Planar Discrete Curve 355

β

γ

α

l2

Px

E−1(P)

Iz
Iy

l1

Fig. 6. Example of dual segments reductions according to the carrier plane P

space. Indeed, such a point represents a 2D line which, together with the carrier
plane, defines a 3D line.

Moreover, those reductions ensure that the preimages of the projections are
compatible, i.e. that there exist a 3D line such that its projections contain
the projected set of pixels in their standard digitization (see previous para-
graph).

3.3 Choice of Fixed Extremities

In Section 2.2, we saw that the first step of our algorithm is to choose an ini-
tial point in the first voxel of the curve and in the carrier plane P . This point
belongs to the intersection between a voxel and a Euclidean plane. From the
definition of standard plane, we know that the voxels cut by a given plane
are those belonging to the standard digitization of this plane. The geometry
of this intersection has been studied by Reveillès [18] and Andrès et al. [19] who
show that the only five geometric shapes possible are a triangle, a trapezoid,
a pentagon, a parallelogram or an hexagon (Figure 7). They moreover char-
acterize completely the shape of the intersection between a plane and a voxel
according to the position of the voxel in the corresponding standard plane. In
[18], Reveillès gives the arithmeticalexpression of intersection vertices coordi-
nates. Thus, the initial point chosen in our algorithm is simply the barycen-
tre of the vertices computed thanks to Reveillès [18] and Andrès et al. [19]
results.

Fig. 7. The five possible intersections between a voxel and a plane

356 I. Sivignon, F. Dupont, and J.-M. Chassery

4 Application on Discrete Faces: Results

The result of this algorithm over a single discrete face is represented in Figure
8. In (a), the pointels belonging to this face are labelled. In (b), a polygonal
curve embedded in the Euclidean plane that is solution for the discrete face is
computed: on this figure, the boundary pointels of (a) are replaced by unit cubes
centered on the pointels, so that it is easier to check that the computed line is

(a) (b) (c)

Fig. 8. Different steps of the polygonalization of a discrete face: (a) the discrete face
pointels, (b) computation of the polygonal line, (c) final polygon

(a) (b)

(c) (d)

Fig. 9. Results of the polygonalization algorithm over complex objects surfaces

Reversible Polygonalization of a 3D Planar Discrete Curve 357

entirely included in the curve. Finally, the polygon computed is represented in
(c), together with the discrete face it corresponds to: the standard digitization
of the polygon is exactly the set of pointels of the discrete face.

On the complexity point of view, each discrete point of the face boundary is
seen only once, computing the reduction of the preimages intervals according to
a new discrete point is done in logarithmic time (using Grabiner algorithm, see
[17]) and the reductions of the intervals presented in Proposition 1 is done in
constant time. Finally, the overall complexity of this algorithm is in O(n logn)
where n denotes the number of boundary points for a given curve.

If we consider complex objects, this algorithm is applied over each discrete
face computed by the segmentation algorithm. A set of polygons (one for each
face) is computed such that the standard digitization of this set of polygons
is exactly the surface pointels of the initial discrete object. Figure 9 presents
two results over a torus and the image named “Al”: the initial discrete object
is depicted on the left, and the set of polygons computed is represented on the
right.

5 Conclusion

In this paper we described a new algorithm to transform a discrete face into
a discrete polygon and a Euclidean polygon. The discrete polygon is defined
analytically thanks to the decomposition of the discrete face boundary into dis-
crete analytical segments. The transformation into a Euclidean polygon is done
incrementally at the same time, fixing the first extremity of each segment as
the last extremity of the previous segment. Next we applied this algorithm onto
each discrete face defined by a discrete surface segmentation algorithm. We get
a set of polygons modelling the discrete surface in a reversible way: the standard
digitization of each polygon is exactly a discrete face of the segmentation.

An interesting future work would be to improve this modelling by sewing
the different polygons in order to get a surface while preserving the reversibility
property. This problem may be related to the polygonal reconstruction of several
adjacent discrete regions in 2D.

References

1. (Qhull) http://www.qhull.org.
2. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface con-

struction algorithm. In Stone, M.C., ed.: SIGGRAPH ’87 Conference Proceedings,
Computer Graphics, Volume 21, Number 4 (1987) 163–170

3. Kenmochi, Y., Imiya, A., Ezquerra, N.F.: Polyhedra generation from lattice points.
In Miguet, S., Montanvert, A., Ubéda, S., eds.: Discrete Geometry for Computer
Imagery. Volume 1176 of LNCS., Springer-Verlag (1996) 127–138

4. Borianne, P., Françon, J.: Reversible polyhedrization of discrete volumes. In:
Discrete Geometry for Computer Imagery, Grenoble, France (1994) 157–167

358 I. Sivignon, F. Dupont, and J.-M. Chassery

5. Françon, J., Papier, L.: Polyhedrization of the boundary of a voxel object. In
Bertrand, G., Couprie, M., Perroton, L., eds.: Discrete Geometry for Computer
Imagery. Volume 1568 of LNCS., Springer-Verlag (1999) 425–434

6. Burguet, J., Malgouyres, R.: Strong thinning and polyhedrization of the surface
of a voxel object. In Borgefors, G., Nyström, I., Sanniti di Baja, G., eds.: Discrete
Geometry for Computer Imagery. Volume 1953 of LNCS., Uppsala, Sude, Springer-
Verlag (2000) 222–234

7. Yu, L., Klette, R.: An approximative calculation of relative convex hulls for surface
area estimation of 3D digital objects. In Kasturi, R., Laurendeau, D., Suen, C.,
eds.: IAPR International Conference on Pattern Recognition. Volume 1., Québec,
Canada, IEEE Computer Society (2002) 131–134

8. Andrès, E.: Defining discrete objects for polygonalization : the standard model. In
Braquelaire, A., Lachaud, J.O., Vialard, A., eds.: Discrete Geometry for Computer
Imagery. Volume 2301 of LNCS., Springer-Verlag (2002) 313–325

9. Françon, J.: Discrete combinatorial surfaces. Graphical Models and Image Pro-
cessing 51 (1995) 20–26

10. Françon, J.: Sur la topologie d’un plan arithmétique. Theoretical Computer Science
156 (1996) 159–176

11. Sivignon, I., Dupont, F., Chassery, J.M.: Discrete surface segmentation into dis-
crete planes. In Klette, R., Zunic, J., eds.: International Workshop on Combina-
torial Image Analysis. Volume 3322 of LNCS., Springer-Verlag (2004) 458–473

12. Sivignon, I., Breton, R., Dupont, F., Andrès, E.: Discrete analytical curve recon-
struction without patches. Image and Vision Computing 23 (2005) 191–202

13. Hough, P.: Method and means for recognizing complex patterns. United States
Patent, n◦3, 069, 654 (1962)

14. Mâıtre, H.: Un panorama de la transformation de Hough. Traitement du Signal 2
(1985) 305–317

15. McIlroy, M.D.: A note on discrete representation of lines. AT&T Technical Journal
64 (1985) 481–490

16. Lindenbaum, M., Bruckstein, A.: On recursive, O(n) partitioning of a digitized
curve into digital straight segments. IEEE Trans. on Pattern Anal. and Mach.
Intell. 15 (1993) 949–953

17. Vittone, J., Chassery, J.M.: Recognition of digital naive planes and polyhedriza-
tion. In Borgefors, G., Nyström, I., Sanniti di Baja, G., eds.: Discrete Geometry
for Computer Imagery. Volume 1953 of LNCS., Springer-Verlag (2000) 296–307

18. Reveillès, J.P.: The geometry of the intersection of voxel spaces. In Fourey, S.,
Herman, G.T., Kong, T.Y., eds.: International Workshop on Combinatorial Im-
age Analysis. Volume 46 of Electronic Notes in Theoretical Computer Science.,
Philadeplhie, Elsevier (2001)

19. Andrès, E., Sibata, C., Acharya, R., Shin, K.: New methods in oblique slice gen-
eration. In: SPIE Medical Imaging. Volume 2707 of Proceedings of SPIE. (1996)
580–589

Uncertain Geometry in Computer Vision

Peter Veelaert

Hogeschool Gent, Dept. INWE, Belgium
peter.veelaert@hogent.be

Abstract. We give an overview of the main ideas and tools that have been em-
ployed in uncertain geometry. We show how several recognition problems in com-
puter vision can be translated into combinatorial optimization problems that in-
volve intersection hypergraphs, and how we can obtain approximate solutions for
these problems when we replace the hypergraphs by intersection graphs. The sta-
tistical properties of these graphs are important when we design algorithms for the
extraction of geometric primitives from images. We illustrate the use of uncertain
geometry with examples involving the detection of circles and the computation of
transformations between images.

1 Introduction

The computation of the uncertainty of geometric primitives and transformations is an
important problem in computer vision. In the classical approach, the uncertainty of
geometric parameters is estimated by statistical analysis. This approach has the dis-
advantage, however, that the computation soon becomes too complicated unless one
introduces simplifying, but often unrealistic assumptions with regard to the statistical
model, e.g. that uncertainty can be represented by uncertainty ellipsoids.

Since a purely statistical approach has many shortcomings, other methods have been
proposed. The way in which geometric uncertainty has been modeled and handled,
however, depends very much on the field of application. Several methods are aimed at
obtaining numerical robustness in geometric modeling: robust geometric computation
[32], interval geometry [16,17], rounded geometry [19]. One of the prototype problems in
this field is the robust intersection of line segments [32]. Also in robotics and mechanical
design there is a need to deal with impreciseness. The models proposed there include
the use of finite precision arithmetic [12], the use of probability density functions [5,6],
and the use of tolerance zones for mechanical parts [7].

When the application is the extraction of geometric primitives and relationships,
uncertainty involves more than numerical errors. Some ad-hoc approaches have been
quite successful. Lowe as well as Nacken introduce significance measures for geometric
relations, e.g. a function that measures how far two line segments are from being collinear
[11,13].A recurring problem, however, is that such a function does not necessarily satisfy
the basic rules of geometry, such as the transitivity of collinearity [13]. In this paper we
advocate a more uniform approach to geometric uncertainty, consisting of one common
methodology applied to many geometric problems, which also takes care of transitivity
and other properties [29].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 359–370, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

360 P. Veelaert

This paper gives an overview of the main ideas and tools that have been employed
in uncertain geometry. Positional and geometric uncertainty is modeled by polytopes
instead of ellipsoids. Such an approach has several advantages. First, in applications re-
garding positional or geometric uncertainty, polytopes can give a much better idea about
the shape of the uncertainty region. Second, when using polytopes to capture uncertainty,
many recognition problems in computer vision can be reformulated as either convex or
combinatorial optimization problems for which standard algorithms are known. The pa-
per also mentions more recent work on geometric transformations, where the positions
of the points are not precisely known, a topic inspired by registration problems in image
processing.

Section 2 describes how geometric uncertainty is modeled in this paper. The advan-
tages of the approach become clear in Section 3 in which we translate the extraction of
geometric primitives into a combinatorial optimization problem involving hypergraphs.
Section 4 describes how intersection hypergraphs can be replaced by intersection graphs.
The statistical properties of intersection graphs are the subject of Section 5.

2 Modeling Geometric Uncertainty

What are the geometric problems that must be solved in computer vision, and for which
of these problems uncertainty is an important issue? Uncertainty is almost unavoidable
in one of the most common tasks in computer vision, i.e. when we extract geometric
primitives from real digital images, look for relations between these primitives, or look
for geometric transformations between points or primitives. The positional uncertainty
of the extracted features has several causes: distortion by lenses, which, when measured
in terms of pixels actually gets larger when the resolution of a digital camera gets better,
the positional error made by a feature detector, or the geometric imperfectness of the real
world, i.e. straight edges are not perfectly straight, round objects do not form perfect
circles, hand-drawn figures are loosely drawn.

Another kind of uncertainty is due to the misclassification of features. A feature
detector may report features that are not really there (false positives), may fail to report
features (false negatives), or in the best case return a likelihood measure for the presence
of a feature. Feature classification errors are mainly caused by noise and illumination
conditions, combined with the often ill-posed nature of feature detection, in particular
when we want to detect features characterized by high intensity variations. Therefore,
while extracting geometric primitives from an image we must cope with different kinds
of uncertainty at different stages of the process.

The examples used most often to illustrate the concepts of uncertain geometry are
digitized straight lines and planes [24, 27, 25, 26, 29, 28]. Two less-known applications
are circles and transformations.

Example 1. Circles. Suppose we don’t know the exact location of the center (a, b) and
radius r of a circle in an image, but we are given a set Si of image points (xj , yj) that
lie inside the circle, and a set So of image points (xk, yk) that lie outside a circle, as
shown in Figure 1. What is known about the position of the center (a, b) of the circle?
The parameters a, b and r must satisfy

Uncertain Geometry in Computer Vision 361

10 20 30 40

10

20

30

40

C

X

Y

Fig. 1. Uncertainty region for circle centers. The gray dots represent the points that must lie
outside each circle; the black dots must lie inside

(xj − a)2 + (yj − b)2 < r2, (1)

r2 < (xk − a)2 + (yk − b)2 (2)

for all (xj , yj) ∈ Si and (xk, yk) ∈ So. Such a solution exists if and only if

(xj − a)2 + (yj − b)2 < (xk − a)2 + (yk − b)2 (3)

for all possible point pairs (xj , yj) ∈ Si and (xk, yk) ∈ So. Or equivalently, we must
have

2a(xk − xj) + 2b(yk − yj) < xk
2 − xj

2 + yk
2 − yj

2, (4)

which determines a half-plane bounded by the perpendicular bisector of the points
(xj , yj) and (xk, yk). The intersection of all half-planes determines the uncertainty
region C of the center, which is also shown in Figure 1, together with one of the circles
that separates Si and So and has its center (+) in C. Likewise we can compute an un-
certainty interval for the radius of the circles separating Si and So. The upper bound for
this interval is the radius of the largest circle with center in C and not containing any
point of So. The lower bound is the radius of the smallest circle with center in C and
containing all points of Si.

Example 2. Uncertainty of geometric transformations. Here we want to model geomet-
ric transformations for which the position of the image points is not known precisely.

362 P. Veelaert

More specifically, to model the uncertainty of the image (x′, y′) of a point p = (x, y) in
R2, we define the uncertainty region R as a convex polygon bounded by n halfplanes,

r1x
′ + s1y

′ ≥ 1 (5)

r2x
′ + s2y

′ ≥ 1
. . .

rnx
′ + sny

′ ≥ 1

in the x′y′-plane. We let T (p,R) denote the set of all transformations T that map p into
the uncertainty region R. In this example we restrict ourselves to affine transformations,
defined as

x′ = ax + by + e (6)

y′ = cx + dy + f

with (x′, y′) as image-point, (x, y) as source-point and the 6 parameters of the transfor-
mation: a, . . . , f . Then the uncertainty of the transformations T (p,R) : p → R can be
described as a convex polyhedron in 6 dimensions (one dimension for each transforma-
tion parameter) by substituting the equations of (6) in (5), yielding

r1(ax + by + e) + s1(cx + dy + f) ≥ 1 (7)

r2(ax + by + e) + s2(cx + dy + f) ≥ 1
. . .

rn(ax + by + e) + sn(cx + dy + f) ≥ 1.

The notion of an uncertainty transformation can be extended to sets of points: let S
be a finite set of points pi ∈ R2, R a collection of subsets Rj of R2, and f a mapping
that assigns each point in S to its corresponding subset in R, then T (S,R, f) denotes
the set of all affine transformations that map each point pi into the set Rj = f(pi).
Clearly, we have T (S,R, f) = ∩iT (pi, f(pi)). Thus T (S,R, f) is a convex polytope
in a 6 dimensional space.

Once a transformation polytope T has been determined, we can use it to find the
image of all other points by uncertain transformations [20]. To be precise, let p be a
point not in S and T a given polytope, then we let R(p, T) denote the uncertainty
region resulting from mapping p by the transformations in T ; that is, R(p, T) = {q ∈
R2 : q = T (p) for some T ∈ T }. One can show that R(p, T) is the convex hull
of the points Tk(p) where the transformations Tk denote the vertices of the polytope
T [20]. Figure 2 shows how three points p1, p2, p3 and their image regions R1, R2, R3
restrict the set of possible transformations to the transformation uncertainty polytope
T = ∩i=1,... ,3T (pi, Ri), which consists of all transformations that map pi into Ri, for
i = 1, . . . , 3. With T we can compute the uncertainty region R(q, T) for any point q in
the plane. Some of these regions are shown in Figure 2.

Examples 1 and 2 involve inequalities that are linear. Unfortunately, this is not always
true, even in the case of a straightforward generalization of Example 2.

Uncertain Geometry in Computer Vision 363

200 400 600 800 1000

200

400

600

800

1000

R1

R3

R2

p1

p2

p3

Fig. 2. The uncertainty regions R(p, T) for a number of points where the transformation uncer-
tainty polytope has been determined by (pi, Ri) for i = 1, . . . , 3. The size of the uncertainty
regions varies with the position of the point q

Example 3. Uncertain source and image points. Here we consider transformations where
the positions of the source points as well as the positions the image points are un-
certain. If we define the uncertainty region of the image point by inequalities of the
form rix

′ + siy
′ ≥ 1, the uncertainty of the source point by inequalities of the form

pjx + qjy ≥ 1 and the affine transformation as in (6), then the parameters of the trans-
formation satisfy a system of inequalities of the form

ri(ax + by + e) + si(cx + dy + f) ≥ 1 (8)

pjx + qjy ≥ 1 (9)

in which the unknowns a, . . . , f, x, y appear in a non-linear form (i.e. the product ax).

3 Turning Geometry into Combinatorial Optimization

Although, as illustrated in Example 3, we cannot always describe uncertainty in terms
linear inequalities, Examples 1 and 2, and the work done on digital lines and planes,
show that it is possible for many geometric problems. When positional uncertainty
is formulated in terms of linear inequalities, the detection of a geometric primitive
becomes a problem in convex optimization. For example, to find a minimal number of
line segments covering as much points as possible we must find the smallest partitioning
of a system such that each subsystem has a solution [27]. Is there a general method to
solve such problems? One approach is to attack the problem directly e.g. by applying
the simplex algorithm to the system, or if necessary to a large number of its subsystems.
A more fruitful approach, however, is to employ Helly’s Theorem which turns a linear
optimization problem into a combinatorial optimization problem. Helly’s Theorem can
be stated as follows [9, 14, 18]:

364 P. Veelaert

Theorem 1 (Helly). Let F be a family of convex subsets of Rd with at least d + 1
elements. If F satisfies the following two conditions:

1. the intersection of any d + 1 sets in F is non-empty,
2. F is finite or all elements of F are compact,

then the intersection of all the elements in F is non-empty.

Helly’s Theorem can be immediately applied to the examples of the previous section.

Example 4. A theorem on circles. Let Si and So be defined as in Example 1. Each
inequality in (4) defines a convex set in the ab-parameter plane. According to Helly’s
Theorem the finite system (4) will have a solution if and only if each 3-inequality
subsystem of (4) has a solution. The results is an elegant property: the given sets Si and
So can be separated by a circle if and only if each 3-point subset of Si can be separated
from each 3-point subset of So by a circle.

The property derived in Example 4 is similar to the numerous properties that have
been proven for digital straight lines and digital planes, of which the chord property is
the most well-known [15]. Although establishing such properties is challenging from a
mathematical viewpoint, in computer vision the interesting step is to use Helly’s Theorem
to reformulate detection problems as combinatorial problems.

Example 5. Circle Detection. We are given two arbitrary sets Si and So of points in
the plane that, as in Example 1, must lie either inside or outside a circle. In this exam-
ple, however, the given sets are not necessarily separable by a circle. To determine the
maximal subset of each set, such that the two subsets can be separated by a circle we
first write down the system with |Si| × |So| inequalities as in (4). Next, we construct a
3-uniform intersection hypergraph H with |Si| × |So| vertices, where each vertex cor-
responds to one of the inequalities. The hyperedges of H are formed by the triples of
vertices that correspond to those 3-inequality subsystems of (4) that have a solution. The
largest complete 3-uniform subhypergraph in H corresponds to the subsets S1 ⊆ Si,
S2 ⊆ So such that S1 and S2 can be separated by a circle, and |S1| + |S2| is maximal.

A further extension of the detection problem is the grouping problem, where multiple
instances of a geometric primitive must be grouped according to some criterion, e.g. size.

Example 6. Grouping Circles of Similar Size. We are given a collection of sets Sk of
points, where the points of each set Sk have been partitioned into a set Sk

i of points
that must lie inside a circle, and a set of points Sk

o that lie outside it. Then, for each set
Sk we can determine the uncertainty interval for the radius of the circles that contain
the inside points and exclude the outside points. According to Helly’s Theorem, if the
interval graph of the radii contains a clique of size N , then there are N circles with a
common radius corresponding to the sets Sk represented by the vertices of the clique.
Thus the interval graph can be used to extract the largest clique of circles that have the
same radius, or likewise the graph can be used to partition the circles by a minimum
clique covering algorithm into a minimal number of groups so that each group consists
of circles that have a similar radius.

Uncertain Geometry in Computer Vision 365

The reformulation of a geometric problem as a combinatorial problem has even more
advantages, because it becomes easier to add other criteria, for example, the requirement
that the points inside a circle should not be too far apart from each other.

Example 7. Additional Constraints for Circles. When we look for a circle that separates
the maximum number of points, as in Example 5, we may exclude circles whose inside
points are too far apart from each other. To be precise, if we have a circle C then we may
require that for each point p ∈ Si lying inside C there is at least one other point q ∈ Si

lying inside C such that the distance between p and q is less than a given threshold. This
can be modeled by a graph G whose vertices represent the points in Si, and in which
two vertices are adjacent when the corresponding points lie close enough to each other.
The additional constraint states that a circle is only accepted when the vertices that lie
inside it form a connected component of the graph G.

In Example 4 Helly’s original theorem was used to derive a property for circles
in images. Helly’s Theorem has been the subject of further extensions and variations.
Danzer et al and Hadwiger et al give extensive overviews of what was known in 1963
[4,8]. More recent advances can be found in [1,2,3,10,23,30], a recent overview in [31].
Some examples in which Helly’s extensions are used in uncertain geometry are given
in [24]. The application of Helly’s Theorem to geometric transformations is described
in [20, 21, 22]. Interval graphs have also been used to extract groups of parallel line
segments from images [25, 26, 29].

4 Intersection Graphs as Approximations for Intersection
ypergraphs

Only in R1 the application of Helly’s Theorem leads to intersection graphs. In Rd,
d > 1, it leads to hypergraphs. Examples illustrating why intersection graphs are not
sufficient for d > 1 are easy to find. In R2 the three edges of a triangle are convex
sets. Each pair of edges has a non-empty intersection at a corner, the intersection of the
three edges, however, is empty. Likewise, in 3-dimensional space a tetrahedron has four
2-dimensional sides. For each triple of sides there is a non-empty intersection at a corner
point, but the intersection of the four sides is empty.

In detection problems, however, not only the correctness of the result but also the
computational effort needed to obtain a result matters. Even though an intersection graph
may give wrong information about common intersections of sets, it may still be useful
as long as we can verify afterwards whether an intersection is non-empty. A maximum
clique in an intersection graph may not correspond to a non-empty intersection. If the
non-emptiness is easy to verify, however, and if the probability of false information is
low, then the worst that can happen is that one must try the second largest clique. In fact,
by using new types of intersection graphs we can improve the chance that a clique in an
intersection graph corresponds to a non-empty intersection of sets, even in Rd, d > 1.

The general idea is the following. LetH be a 3-uniform intersection hypergraph, with
N vertices vi each representing a set Si, and a set of hyperedges {vi, vj , vk} such that
Si∩Sj ∩Sk �= ∅. We construct a graphGwithN(N−1)/2 vertices denoted as vivj . The

H

366 P. Veelaert

(a) (b)

Fig. 3. Image (a) shows the feature points detected in the reference image, while the feature points
detected for the second, transformed test image are depicted in image (b)

edges of G consist of all vertex pairs {vivj , vkvl} satisfying Si ∩Sj ∩Sk ∩Sl �= ∅. The
motivation to replaceH byG is as follows. Suppose we find a clique in this graph withN
vertices vivj , vkvl, . . . , vmvn. For each edge {vivj , vkvl} we haveSi∩Sj ∩Sk∩Sl �= ∅
and therefore Si ∩Sj ∩Sk �= ∅, . . . , Sj ∩Sk ∩Sl �= ∅ for the four combinations of three
sets in a collection of four. Since the clique has N(N − 1)/2 edges this implies that
for the collection C = {Si, Sj , . . . , Sn} there are at least 4N(N − 1)/2 intersections
among the 2N(2N − 1)(2N − 2)/6 possible intersections of 3 arbitrary sets in C that
are known to have a non-empty intersection. That is, the ratio of triples that have been
verified to the total amount of triples is 6(N − 1)/((2N − 1)(2N − 2)). This means
that if one finds a clique in G for which N is not too large, there is a good chance that
it also corresponds to a clique in the hypergraph H .

Example 8. Intersection Graphs for Geometric Transformations. We illustrate the use
of intersection graphs for transformations. Consider the transformation polytopes of a
transformation of the form

x′ = ax + e (10)

y′ = dy + f,

that is a transformation limited to a scaling and translation.
These transformations can be used to solve registration problems. Figure 3 shows an

example where in two similar images points have been marked as feature points by a fea-
ture detector [22]. We must find a transformation that maps the left image upon the right
image as good as possible. Maximal bounds are known for the transformation parame-
ters, i.e. 0.9 ≤ a, b ≤ 1.1, and −20 ≤ e, f ≤ 20. We also know that the feature detector
is not completely accurate, that is even after adequate scaling and translation, a feature
point in the second image may still be displaced a few pixels from the corresponding
feature point in the first image.

To find the best transformation we proceed as follows. Let Tg denote the polytope
defined by the inequalities 0.9 ≤ a, b ≤ 1.1, and −20 ≤ e, f ≤ 20. We select a small

Uncertain Geometry in Computer Vision 367

(a) (b)

Fig. 4. In image (a), the uncertainty regions are centered on a subset of source feature points (+)
projected in the test image with the image feature points (•). All candidate feature image points
are located within these regions. The intersection graph for situation (a) is shown in (b)

number of randomly selected feature points pi in the first image (source points), marked
by crosses in Figure 4(a).Around each source point we place a large rectangle Ri defined
by Ri = R(pi, Tg). Next we construct a graph G whose vertices correspond to the image
points qij that are located inside the regions Ri. Around each point qij we define a small
rectangle Qij (only a few pixels wide) which takes into account the displacement error
made by the feature detector. We compute the polytopes Tij = Tg ∩ T (pi, Qij) as well
as the graph G shown in Figure 4(b) which is the intersection graph of the polytopes Tij .
Although G is an intersection graph, the existence of an edge in G corresponds to a non-
empty intersection of three polytopes (not two), that is,Tg∩T (pi, Qij)∩T (pk, Qkl) �= ∅.
Therefore, as practice shows, a clique in G corresponds almost always to a non-empty
transformation polytope, containing transformations that map all the feature points in
the clique from the first to the second image.

Intersection graphs were also used as a replacement for 3-uniform hypergraphs to
find and group collinear and concurrent line segments [28, 27].

5 Statistical Properties of Intersection Graphs

Real images obey statistical laws. It is almost impossible, however, to estimate the prob-
ability density function of, say, the lengths of line segments in a typical indoor scene.
Nonetheless, we know for example that parallelism occurs often in real scenes and that the
uncertainness of parallel relations in a digital image is mostly due to the impreciseness of
the image formation process. Thus, because of transitivity, a graph representing parallel
relationships in a digitized image will resemble a collection of disjoint cliques, provided
the image data are sufficiently good. More generally, the graphs (and hypergraphs) that

368 P. Veelaert

appear in uncertain geometry are far from being random graphs. This has important
consequences from a computational viewpoint, since many combinatorial optimization
problems are NP-complete. With standard algorithms it will take much computational
effort to find a maximum clique in a large random graph (> 50 vertices). However, inter-
section graphs (or hypergraphs) are not random and we can use the statistical properties
of the graphs to design an efficient clique finding algorithm.

Example 9. Maximum clique for geometric transformations. For geometric transforma-
tions, the intersection graph G as constructed in Example 8 usually contains a single
large clique, to which some additional vertices are loosely connected. That is, there is
a subset of vertices that have large degree forming a clique, and additional vertices that
have low degree. Furthermore, the intersection graph is also known to be a r-partite
graph. This results in a considerable speed up for the maximum clique algorithm, since
it must only look at subgraphs that contain at most one vertex of each subset in the
partition.

This leads to the following algorithm. First, we use Turan’s Theorem to compute a
lower bound bl for the maximum clique size.According to Turan’s Theorem a graph with
n vertices and without a clique of size p, p > 1 can have at most (1 − 1/(p − 1))n2/2
edges. Thus we can compute a lower bound for the size of the maximum clique given
n and the number of edges |E|. Furthermore, we can improve this lower bound by
eliminating one by one the vertices of minimal degree from the graphG and recalculating
the minimal clique size for each subgraph. Next, we derive an upper bound bu for the
maximum clique size. Let d1, d2, . . . , dm be the ordered, decreasing degree sequence
of the graph G. Then an upper bound is given by the maximum value of the index k
such that dk ≥ (k − 1), since for a clique of size k we need at least k vertices of degree
di ≥ k − 1.

We then look at all the subgraphs of order bl of G, and we verify whether they are
cliques. Finally, if bu > bl, we try to extend each of this cliques by adding one vertex at
a time. Note that the difference bu − bl is a good indication of the computational effort
that will be needed to find a maximum clique. If the difference between bl and bu is too
large (typically > 2), then the graph G is not what we expect and the feature points are
not well chosen.

Likewise, in [27] graphs replaced hypergraphs to find collinear line segments. An
algorithm based on simplicial elimination orderings was used to find clique coverings
of graphs. The method works because the line segment configurations for which cliques
do not correspond to non-empty intersections are very rare, and can easily be detected.

6 Conclusion

This paper describes a methodology, which has been applied to several recognition and
detection problems in computer vision. Broadly speaking it can be summarized as fol-
lows. Linear inequalities are used to model positional and parametric uncertainty. Next,
Helly’s Theorem is used to reformulate a problem about inequalities as a combinatorial
problem involving intersection hypergraphs, to which other combinatorial constraints
can be added also in the form of graphs. Finally, to approximate the hypergraph optimiza-

Uncertain Geometry in Computer Vision 369

tion problem, we replace it by a graph optimization problem, and we use the statistics
of the graph to select a good detection or grouping algorithm.

What are the limitations of this approach? First, not every form of positional or
parametric uncertainty can be modeled by linear inequalities, as Example 3 shows.
Nonetheless, the research done on lines, planes and transformations proves that at least
some important geometric problems can be solved this way. Second, one possible limi-
tation is the occurrence of hypergraphs as well as NP-complete optimization problems.
In practice, however, this has not been an important issue yet. For every case in which
this methodology was tried it has always been possible to design efficient heuristic algo-
rithms. What are the benefits of the approach? Applications in computer vision show that
it is beneficial to have a more precise model for uncertainty than the ad-hoc approaches
that are often taken. Modeling uncertainty by convex sets is certainly an improvement
when compared to the use of uncertainty ellipsoids, while keeping computational com-
plexity still acceptable.

References

1. A. B. Amenta, Helly Theorems and Generalized Linear Programming, PhD thesis, University
of California at Berkeley, 1979.

2. M. Atallah and C. Bajaj, “Efficient algorithms for common transversals”, Inform. Process.
Lett. , vol. 25, pp. 87–91, 1987.

3. D. Avis and M. Doskas, “Algorithms for high dimensional stabbing problems”, Discrete
Applied Math. , vol. 27, pp. 39–48, 1990.

4. L. Danzer, B. Grünbaum, and V. Klee, “Helly’s theorem and its relatives”, in Proceedings of
the Symposium on Pure Mathematics, vol. 7, Convexity, pp. 101–180, Providence, RI, 1963.
American Mathematical Society.

5. H. F. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE Trans. Robotics Automat. ,
pp. 23–31, 1988.

6. H. F. Durrant-Whyte, “Uncertain geometry,” in Geometric Reasoning (Kapur and Mundy,
eds.), pp. 447–481, Cambridge: MIT Press, 1989.

7. A. Fleming, “Geometric relationships between toleranced features,” in Geometric Reasoning
(Kapur and Mundy, eds.), pp. 403–412, Cambridge: MIT Press, 1989.

8. H. Hadwiger and H. Debrunner, Combinatorial Geometry in the Plane, Holt, Rinehart and
Winston, New York, 1964.

9. E. Helly, “Über Mengen konvexer Körper mit gemeinschaftligen Punkten”, Jahres-
ber. D.M.V. , vol. 32, pp. 175–176, 1923.

10. D. G. Larman, “Helly type properties of unions of convex sets”, Mathematika, vol. 15, pp.
53–59, 1968.

11. D. Lowe, “3-d object recognition from single 2-d images,” Artificial Intelligence, vol. 31,
pp. 355–395, 1987.

12. V. J. Milenkovic, “Verifiable implementations of geometric algorithms using finite precision
arithmetic,” in Geometric Reasoning (Kapur and Mundy, eds.), pp. 377–401, Cambridge:
MIT Press, 1989.

13. P. Nacken: A metric for line segments. IEEE Trans. Pattern Anal. Machine Intell., 15,1312–
1318, 1993.

14. R. T. Rockafellar, Convex Analysis, Princeton Univerisity Press, Princeton, 1970.
15. A. Rosenfeld, “Digital straight line segments”, IEEE Trans. Comput., vol. 23, pp. 1264–1269,

1974.

370 P. Veelaert

16. M.G.Segal and C.H.Sequin, Consistent calculations for solids modeling. Proc. 1st Annual
ACM Sympos. Comput. Geom., pp. 29-38, 1985.

17. M.G.Segal, Using tolerances to guarantee valic polyhedral modeling results. Comput. Graph.
(Proc. SIGGRAPH ’90), Vol. 24, pp. 105-114, 1990.

18. J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions I, Springer, Berlin,
1970.

19. K. Sugihara, On finite-precision representations of geometric objects. J. Comput. Syst. Sci.,
Vol. 40, pp. 2-18, 1989.

20. Teelen, K., Veelaert, P.: Uncertainty of affine transformations in digital images. Proceedings
of ACIVS 2004 (Advanced Concepts for Intelligent Vision Systems), Brussels, (2004) 23–30.

21. Teelen, K., Veelaert, P.: Computing the uncertainty of geometric primitives and transforma-
tions. Prorisc, Velthoven, (2004).

22. Teelen, K., Veelaert, P.: Computing the uncertainty of transformations in digital images,
accepted for SPIE’s Conference on Vision Geometry XIII, San Jose (2005).

23. H. Tverberg, “Proof of Grünbaum’s conjecture on common transversals for translates”,
Discrete Comput. Geom., vol. 4, pp. 191–203, 1989.

24. P. Veelaert, “Geometric constructions in the digital plane,” J. Math. Imaging and Vision,
vol. 11, pp. 99–118, 1999.

25. P. Veelaert, “Line grouping based on uncertainty modeling of parallelism and collinearity,”
in Proceedings of SPIE’s Conference on Vision Geometry IX, (San Diego), pp. 36–45, SPIE,
2000.

26. P. Veelaert, Parallel line grouping based on interval graphs, Proc. of DGCI 2000, vol. 1953
of Lecture Notes in Computer Science, pp. 530–541. Uppsala, Sweden: Springer, 2000.

27. P. Veelaert, “Collinearity and weak collinearity in the digital plane,” Digital and Image Ge-
ometry, vol. 2243 of Lecture Notes in Computer Science, pp. 434–447, Springer, 2001.

28. P. Veelaert, Concurrency of line segments in uncertain geometry, Proc. of DGCI 2002,
vol. 2301 of Lecture Notes in Computer Science, pp. 289–300. Bordeaux, France: Springer,
2002.

29. P. Veelaert, “Graph-theoretical properties of parallelism in the digital plane,” DiscreteApplied
Mathematics, 125, (2003), pp. 135-160.

30. R.Wenger, “A generalization of Hadwiger’s transversal theorem to intersecting sets”, Discrete
Comput. Geom., vol. 5, pp. 383–388, 1990.

31. R. Wenger, “Helly-type theorems and geometric transversals”, Handbook of Discrete and
Computational Geometry, eds. Goodman and Rourke, CRC Press, pp. 63–82, 1997.

32. C.K. Yap, “Robust geometric computation”, Handbook of Discrete and Computational
Geometry, eds. Goodman and Rourke, CRC Press, pp. 653-668, 1997.

Optimal Blurred Segments Decomposition
in Linear Time

Isabelle Debled-Rennesson1, Fabien Feschet2, and Jocelyne Rouyer-Degli1

1 LORIA Nancy – Campus Scientifique - BP 239,
54506 Vandœuvre-lès-Nancy Cedex

{debled, rouyer}@loria.fr
2 LLAIC - IUT Clermont-Ferrand – Campus des Cézeaux,

63172 Aubière Cedex - France
feschet@llaic3.u-clermont1.fr

Abstract. Blurred (previously named fuzzy) segments were introduced
by Debled-Rennesson et al [1, 2] as an extension of the arithmetical ap-
proach of Reveillès [11] on discrete lines, to take into account noise in
digital images. An incremental linear-time algorithm was presented to de-
compose a discrete curve into blurred segments with order bounded by
a parameter d. However, that algorithm fails to segment discrete curves
into a minimal number of blurred segments. We show in this paper, that
this characteristic is intrinsic to the whole class of blurred segments. We
thus introduce a subclass of blurred segments, based on a geometric mea-
sure of thickness. We provide a new convex hull based incremental linear
time algorithm for segmenting discrete curves into a minimal number of
thin blurred segments.

1 Introduction

Discrete (also called digital) segments are well known objects which have been
thoroughly studied for more than 30 years [12]. There are many definitions of
discrete segments, all equivalent for 8-connected discrete sets and 4-connected
discrete sets. Discrete segments serve as building blocks for representation [16],
decomposition [4] or analysis of discrete curves and more generally shapes. For
instance, polygonalizations of discrete curves are widely used in shape represen-
tation [16] and can be computed in linear time [14, 3, 7]. Moreover, the use of
discrete segments permits a perfect representation or reconstruction of discrete
curves. However, this might result in complicated representations when discrete
curves include noise or have been distorted by an acquisition process. Many
polygonal approximation methods have been proposed throughout the years us-
ing different approachs [9, 13, 15, 6]. To deal with noise and as an extension of
the results presented in [3], the notion of fuzzy segments was introduced in [1, 2].
From now on, we shall name these segments blurred segments rather than fuzzy
segments in order to prevent any confusion with fuzzy logic and fuzzy geometry.
The theorem of Debled-Rennesson and Reveillès [3] provides an incremental algo-
rithm with linear-time complexity for the recognition of discrete segments using

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 371–382, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

372 I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli

arithmetical properties and has been extended to the case of blurred segments
by Debled-Rennesson et al [1]. However, blurred segments represent supersets of
the original discrete data and thus, the result obtained with the previous the-
orem can not be guaranteed to be optimal, in the sense that the orders of the
blurred segments are not necessarily minimal. We present in this paper a study
of the order of blurred segments and point out the reason why it is difficult
to mimimize the order of a blurred segment in the recognition process. Hence,
we present theoretical arguments to justify a restriction in the class of blurred
segments in order to guarantee optimality in the recognition process. Moreover,
our approach can deal with disconnected sets which was impossible with the
theorem given in [1].

The paper is organized as follows. In section 2 we recall definitions and prop-
erties used in [1]. We present in section 2.3, a problem in the minimization of
the order of recognized blurred segments. This problem is explained by theorem
2 and leads to the introduction of a subclass of blurred segments by adding a ge-
ometric characterization based on convex hulls. A new recognition algorithm of
blurred segments is described in section 3 by the study of their equivalent char-
acterizations in terms of convex hulls. An incremental linear-time recognition
algorithm is presented which guarantees that the computed blurred segments
are the thinnest possible ones. Experiments are given in section 4 to show the
quality of the decomposition of the proposed algorithm. The paper ends up with
some conclusions and perspectives in section 5.

2 Blurred Segments

2.1 Definitions

The notion of blurred (also called fuzzy) segments relies on the arithmetical
definition of discrete lines [11] where a line, with slope a

b , lower bound μ and
thickness ω (with a, b, μ and ω being integer such that gcd(a, b) = 1) is the set
of integer points (x, y) verifying μ ≤ ax − by < μ + ω. Such a line is denoted by
D(a, b, μ, ω). The real lines ax− by = μ+ω − 1 and ax− by = μ are respectively
named the upper and lower leaning lines of D(a, b, μ, ω) [3]. The integer points
(xL, yL) (resp. (xU , yU)) of the lower (resp. upper) leaning lines of D(a, b, μ, ω)
are called the lower (resp. upper) leaning points of D(a, b, μ, ω). We refer to Fig.
1 for a descriptive example of these notions.

In the following, we restrict our study to points of the first octant of Z2, due
to symmetries with respect to Ox, Oy and the real line x = y. We thus always
have 0 ≤ y ≤ x. This hypothesis can be done without loss of generality and
simplifies notations, proofs and definitions.

Definition 1. [1] A set Sb of consecutive points (|Sb| ≥ 2) of an 8-connected
curve is a blurred segment with order d if there is a discrete line D(a, b, μ, ω),
called bounding, such that all points of Sb belong to D and ω

max(|a|,|b|) ≤ d.

The notion of order of a blurred segment has been introduced to make a
difference compared to the thickness of bounding lines of S, since any sufficiently

Optimal Blurred Segments Decomposition in Linear Time 373

lower leaning line

upper leaning line

x

y

Sb points leaning points of D

Fig. 1. A strictly bounding line D of a blurred segment Sb

thick discrete line can contain S. Thus, two discrete lines containing S can be
compared with respect to their orders and this leads to a classification of the
lines containing S. To be reasonably closed to the points of S, more restrictive
conditions onto the discrete lines containing S must be introduced as follows.

Definition 2. [1] Let Sb be a blurred segment with order d whose abscissa inter-
val is [0, l−1] and let D(a, b, μ, ω) be a bounding line of Sb. D is named strictly
bounding for Sb if D possesses at least three leaning points in the interval
[0, l − 1] and, Sb contains at least one lower leaning point and one upper leaning
point of D.

In Fig. 1, D(1, 4,−4, 8) is a strictly bounding line of the blurred segment Sb.
The leaning points of D are the points (4k + 3, k) and (4k, k + 1), for k ∈ [0, 3]
and Sb contains the lower leaning point (3,0) and the upper leaning point (12,4).

2.2 Algorithm for Segmentation into Blurred Segments with
Strictly Bounding Lines

We briefly recall in this paragraph the technique used in [1] to segment a discrete
curve into order d blurred segments with strictly bounding lines. This segmen-
tation relies on the following theorem, which studies the different possible cases
of the growth of a blurred segment.

Theorem 1. [1] Let us consider a blurred segment Sb in the first octant whose
abscissa interval is [0, l − 1] and D(a, b, μ, ω), a strictly bounding line. In this
case, the order of Sb is ω

b . Let M(xM , yM) be an integer point connected to Sb

whose abscissa is equal to l or l − 1. Let the remainder at M , denoted r(M),
be a function of D defined as r(M) = axM − byM.

(i) If μ ≤ r(M) < μ + ω, then M ∈ D ;
Sb ∪ M is a blurred segment with order ω

b and with D as strictly bounding
line.

(ii) If r(M) ≤ μ − 1, then M is external to D ;
Sb ∪ M is a blurred segment with order ω′

b′ and the line D′(a′, b′, μ′, ω′) is
strictly bounding, with
− b′ and a′ coordinates of the vector −−−−−−−→

Pr(M)+1M , Pr(M)+1 being the point
whose remainder is r(M) + 1 with respect to D and xPr(M)+1 ∈ [0, b− 1],

374 I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli

M

y

P

d′
L

d′
UMdU

y

P

dL

xx

Fig. 2. An example of blurred segment growth relying on Theorem 1

− μ′ = a′xM − b′yM

− ω′ = a′xLL
− b′yLL

− μ′ + 1, with LL(xLL
, yLL

) last lower leaning point
of the line D present in Sb.

(iii) If r(M) ≥ μ + ω, then M is external to D ;
Sb ∪ {M} is a blurred segment with order ω′

b′ and the line D′(a′, b′, μ′, ω′) is
strictly bounding with
− b′ and a′ coordinates of the vector −−−−−−−→

Pr(M)−1M , Pr(M)−1 being the point
whose remainder is r(M)− 1 with respect to D and xPr(M)−1 ∈ [0, b− 1],

− μ′ = a′xUL
−b′yUL

with UL(xUL
, yUL

) last upper leaning point of the line
D present in Sb,

− ω′ = a′xM − b′yM − μ′ + 1.

An example of application of this theorem is given in Fig. 2. A blurred segment
Sb with order 2 is depicted in Fig. 2 (left). D(1, 3,−2, 4) is strictly bounding for
Sb, dU and dL are the leaning lines of D. The point M(15, 4) is added to Sb.
Since r(M) = 3, adding M to Sb corresponds to the case (iii) of the theorem:
P is the point in [0, 2] such that r(P) = 2, the slope of D′ is computed with
the vector PM , therefore D′(4, 13,−12, 21) is strictly bounding for Sb ∪{M}. In
Fig. 2 (right), a representation of D′ and Sb ∪ {M} (black points) is given. The
points of D′ which do not belong to Sb ∪ {M} are in white, d′

U and d′
L are the

leaning lines of D′.
A linear time incremental algorithm of segmentation into order d blurred

segments was deduced from this theorem in [1, 2]. The principle was as follows:
let Sb be the current order d blurred segment, a point M of C was added to Sb, the
characteristics of a strictly bounding line of Sb ∪ M were computed according
to Theorem 1. The current segment included the point M if the value of the
obtained ratio ω/max(|a|, |b|) was lower than or equal to the order d. Else, the
current order d blurred segment ended at the point located before M in C and
a new order d blurred segment started at M .

2.3 Main Drawback

Theorem 1 describes an incremental method to construct a strictly bounding line.
However the constructions do not garantee that the order of the built bounding
line is minimal. Hence, the segmentation of a discrete curve might be done into
too many blurred segments. For instance, the curve depicted in Fig. 3 (left) would
be uncorrectedly segmented into several parts with d = 1.9, while there exists a

Optimal Blurred Segments Decomposition in Linear Time 375

y

x

Fig. 3. (left) a sample discrete curve (right) gray scale plot of ω/b with b in x-axis
and a in y-axis

bounding line with ratio strictly lower than 1.9. The experimental investigations
that we have performed, induced us to study in detail a better measure for
segment thickness to garantee the order of the built bounding lines.

To understand the ratio ω/ max(|a|, |b|), we study it in the first octant using
the curve in Fig. 3. For any a and b values, with a ≤ b, we compute the remainder
r(M). The value of ω is obtained by adding 1 to the difference between the
maximum and the minimum of the remainders. We denote by ω(a, b) this value.
The result is depicted on Fig. 3 (right) where light grey values correspond to
low values of the ratio ω/b. As shown in Fig. 3 (right), the function ω(a, b)/b
has a lot of local extrema. The minimalization of ω(a, b)/b seems to be a hard
combinatorial problem. Moreover, ω(a, b)/b is sensitive to multiplications since
the couples (a, b) equal to (1, 6), (3, 18) and (4, 24) do not produce the same value.
Their values are respectively 1.83, 1.72 and 1.70. The following theorem given for
the first octant without loss of generality explains why the minimization of the
ratio ω(a, b)/b might be impossible to obtain due to its asymptotic behaviour.

Theorem 2. For any finite set Sb, let us denote by W the series (ω(ak, bk)/bk)
where k is a positive integer, ak = k and bk = kb0 + λ, with b0 and λ positive
integers. Then W is decreasing and has a limit equals to ω(1,b0)−1

b0
.

Proof.
We introduce the remainder r(a,b)(M) = axM − byM . It is easy to see that
r(ak,bk)(M) = kr(1,b0)(M) − λyM . We now introduce Δ(a,b)(M,M ′) as follows,

Δ(ak,bk)(M,M ′) = r(a,b)(M) − r(a,b)(M ′) = kΔ(1,b0)(M,M ′) + λ (yM ′ − yM)
(1)

Suppose that Δ(1,b0)(M,M ′) = 0. Hence, Δ(ak,bk)(M,M ′) = λ (yM ′ − yM).
Since (yM ′ − yM) is bounded on any finite set and λ is constant, we deduce
that the previous value is bounded above by a constant δ.

Suppose now that Δ(1,b0)(M,M ′) �= 0. By using the same boundedness ar-
gument, we see that there exists a value k0 such that

Δ(ak,bk)(M,M ′) > 0 (resp. < 0) ⇐⇒ Δ(1,b0)(M,M ′) > 0 (resp. < 0) (2)

376 I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli

for any k ≥ k0. Hence asymptoticaly, the remainders r(ak,bk)(.) and the remain-
ders r(1,b0)(.) have the same ordering. However, the remainders r(ak,bk)(.) are
diverging when k tends to infinity. Thus for sufficiently large k, the minimum
and the maximum of the remainders r(ak,bk)(.) are obtained exactly for the same
points Mmin and Mmax as for the remainders r(1,b0)(.). This permits us to deduce
that for sufficiently large k,

ω(ak,bk) = k
(
ω(1,b0) − 1

)
+ λ (yMmin − yMmax) + 1 (3)

So,

ω(ak,bk)

bk
=

k
(
ω(1,b0) − 1

)
kb0 + λ

+
yMmin − yMmax + 1

kb0 + λ
(4)

The limits of the previous expression is given by the limit of the first term,
specifically

lim
k→+∞

ω(ak,bk)

bk
=

(
ω(1,b0) − 1

)
b0

(5)

We conclude the proof by a study of a specific case obtained when the re-
mainders r(1, b0) are all equals. In such a case, ω(1, b0) = 1 and ω(ak, bk) =
1 + λ (maxM yM − minM yM). Thus by dividing by bk and taking the limit, we
obtain 0. The result still holds and this concludes the proof. �

To have an optimal algorithm, we slightly modify the subclass of considered
blurred segments by taking the limit measure of the previous theorem as a
measure for comparing blurred segments.

We start by giving a geometric description of the limit measure. The vertical
distance of a discrete line D(a, b, μ, ω) is the vertical distance (ordinate
difference) between the leaning lines of D and is equal to ω−1

b . We now recall
that a supporting line of a convex set C is a line l such that the intersection
of l with C is not empty, and such that C is entirely either below or above l [5].
The vertical distance of a convex set C, is the minimal vertical distance of
any pair of parallel supporting lines. This could also be defined as the maximal
length of the intersection of C with a vertical line.

Definition 3. Let us consider a set of 8-connected points Sb. A bounding line of
Sb is said optimal if its vertical distance is minimal, i.e. if the vertical distance
of Sb equals to the vertical distance of its convex hull conv(Sb).

This definition is illustrated in Fig. 4 and leads to the following new definition
concerning blurred segments.

Definition 4. A set Sb is a blurred segment of width ν if and only if its
optimal bounding line has a vertical distance less or equal to ν.

The recognition of blurred segments with width ν is thus equivalent to the
computation of the vertical distance of the convex set conv(Sb).

Optimal Blurred Segments Decomposition in Linear Time 377

vertical distance

convex hull

M

y

x

Fig. 4. An optimal bounding line

3 Convex Hulls and Blurred Segments

3.1 Characterization of the Vertical Distance of a Finite Convex
Set

Let us denote by Li and Ui respectively the lowest and highest intersection point
of a finite convex set C with the vertical line given by x = i and by V(i) the
distance between Li and Ui, then for any i �= j, the quadrangle (LjUjUiLi) is
located inside C. It is straightforward to see that the function V(.) is a concave
function. Hence, every local maximum of the function is also a global maximum
of the function. The positions of maxima of the function V(.) have the following
property.

Proposition 1. For any finite convex set C, the function V(.) has a maximum
value at a position i where Li or Ui can be chosen to be a vertex of the border,
Bd C, of C.

Proof. Let us consider a position i such that neither Li nor Ui are vertices of
Bd C and the edges of Bd C containing Li and Ui. It is easy to see that i cannot
be the position of a maximum when the slopes of these edges are not equal. If the
case of equality we can move on the edges until one of the two points becomes
a vertex of Bd C. �

From this proposition, we can deduce two facts if we are looking for the vertical
distance of a convex set: first, we only have to consider points on the border
of C and second, extrema are obtained for some x positions of the vertices of
Bd C. This leads to three cases: (edge,vertex), (vertex,edge) or (vertex,vertex)
where the first element represents the lower part of the convex set and the
second element represents the upper part. It must be noticed that the previ-
ous proposition is identical to the one characterizing the width of a convex
set [10].

It is clear that the edges corresponding to the position of a maximum of
V(.) are supporting lines, taking horizontal lines for a couple (vertex,vertex).
Moreover, the edge and its parallel passing through the vertex define exactly the
lower and upper leaning lines of an optimal bounding line for C. Hence, optimal
lines are deduced from the positions of maxima.

378 I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli

M

P

N

L

L

F
U

U

L

N

M

P U

L

UF
L

L

Fig. 5. Adding a new point either above (left) or below (right)

3.2 New Recognition Algorithm

Let Sb = {(xi, yi), 0 ≤ i < n}, a blurred segment in the first octant with
D(a, b, μ, ω) as optimal bounding line. We suppose that Sb contains two upper
leaning points, UF and UL, and one lower leaning point, LL. UF , UL and LL

are vertices of the convex hull of Sb conv(Sb). Moreover, the vertical distance of
D and of conv(Sb) can be calculated at the point LL. To compute the convex
hull of Sb, we use Melkman’s algorithm [8]. Let us recall that this algorithm
incrementally computes the convex hull of n points forming a simple polygonal
line in O(n) time based on a double ended queue (deque) list. Since points are
added with increasing x, we are guaranteed to have a simple polygonal line.

Growth of a Blurred Segment. Suppose that we add a new point M to Sb,
S ′

b = Sb ∪ {M}. There are three cases: M is added above, inside or below D.
If M belongs to D then, after the application of Melkman’s algorithm [8],

the vertical distance remains the same. The new set of points, S ′
b, is a blurred

segment with the same width and with the same optimal bounding line D. In
the other cases, the vertical distance must be recomputed. P , the intersection
point between the vertical line from LL and UF UL, is strictly inside [UF UL] (see
Fig. 5).

Suppose that M is added above D. Let us apply Melkman’s algorithm. The
convex set is modified and we call N the point before M in the upper part of the
resulting convex hull, see Fig. 5 (left). N is necessarily before UF or is UF . As
a consequence, the vertical projection of LL is inside [NM]. Thus, the vertical
distance of the new convex set strictly increases. The key point is to locate
the new position of a maximum. It is clear that N cannot represent a position
of a maximum since V(N) ≤ V(LL). Moreover, M does not project vertically
strictly inside an edge of the lower part of conv(S ′

b). Hence, the new position of
a maximum if necessarily obtained for one point at the right of LL in the lower
part of conv(S ′

b). Let us recall now that local extrema are global extrema for the
function V(.) such that we only have to test the candidate points in sequence
and stop at the first local maximum, called C.

Suppose now that M is added below D. Let us apply Melkman’s algorithm.
The lower part of the convex set is modified and we still call N the point before
M in the lower part of the new convex hull, see Fig. 5 (right). N is necessarily
to the left of LL. Hence, N cannot be the new position of a maximum since
V(N) ≤ V(LL). We do not know precisely where N is located in comparison

Optimal Blurred Segments Decomposition in Linear Time 379

with [UF UL]. It might be either on the left of UF or inside [UF UL]. In both
cases, it is however straightforward to see that no position strictly to the left of
UL can be the position of a maximum. As in the previous case, neither N nor
M can be positions of maxima. So, the new position of a maximum is given by
one point situated to the right of UL on the upper part of the new convex hull
and we only have to test the candidate points in sequence and stop at the first
local maximum, called C.

In both these cases, S ′
b is a blurred segment with optimal bounding line D′

for which the points M , N , and C are leaning points. Moreover, the vertical
distance of conv(S ′

b) is equal to the vertical distance of D′ and can be calculated
at the point C.

We have neglected the case where LL and P are vertices of conv(Sb). If we
choose any edge containing either LL or P and keep the other point as a ver-
tex, we obtain a couple (vertex,edge) or (edge,vertex) with the same vertical
distance. This result is of course different from the one of the width of a convex
set [5], but applies perfectly in our context.

Recognition Algorithm. From the study of the growth of a blurred segment
we can deduce an incremental recognition algorithm of width ν blurred segments
(see Algorithm 1) where points are taken in order of increasing x values. It gives
as result a boolean value equal to true if a sequence of points S (input) is a
width ν blurred segment. Morever the last calculated values of a, b, μ and ω are
the characteristics of an optimal bounding line of S.

Algorithm 1: Incremental recognition of blurred segment with width ν

Input : S an 8-connected sequence of integer points, ν a real value
Output : isSegment a boolean value, a, b, μ, ω integers
Initialization: isSegment = true, a = 0, b = 1, ω = b, μ = 0, M = (x0, y0).
while S is not entirely scanned and isSegment do

M = next point of S;
add M to the upper and lower convex hulls of the scanned part of S;
r = axM − byM ;
if r = μ then UL = M ;
if r = μ + ω − 1 then LL = M ;
if r ≤ μ − 1 then

UL = M ;
Let N the point before M in the upper convex hull, a0 = yM − yN ,
b0 = xM − xN , then a = a0

gcd(a0,b0) , b = b0
gcd(a0,b0) , μ = axM − byM ;

Find the first point C in the lower part of the convex hull starting at
LL, such that : slope of [C, Cnext] > a

b
;

LL = C;
else

if r ≥ μ + ω − 1 then symmetrical case
end
isSegment = ω−1

b
≤ ν;

end

380 I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli

y

D3(1, 4, −5, 7)

y

D4(1, 3, −3, 6)

y

y

D1(1, 2, 0, 2)

y

D2(2, 3, 0, 3)
xLL = C

UL = M4

x

LL = M6

N

x

LL = C

N

UL = M10

Points of D4 which don’t belong to Sb

N
x

UL = M3

N

LL = C x

UL = C

M3

M4

M6

M10

Points of Sb = {Mi}i=1..15

Fig. 6. An example of width 2 blurred segment incremental recognition

Complexity. We now study the complexity of Algorithm 1 on a set S of n
points. The first part of the algorithm is the update of the convex hull after the
insertion of the new point M . However, Melkman’s algorithm [8] has a linear-
time complexity for the whole set of insertions. Since, a point is used only for one
convex hull, we deduce easily that this part still have a linear-time complexity.
The second part of the algorithm concerns the update of the position of a max-
imum. Each time a point is added, part of the previous convex hull is examined
to detect the new position of a maximum. However, the main property of the
function V(.) is that it is a concave function. Thus as previously mentioned, we
only test points for which V(.) is not locally maximal and stop at the first local
maximum. This part of the algorithm also has a linear-time complexity. Then
we can conclude that Algorithm 1 has a linear-time complexity.

An example of the algorithm processing is depicted in Fig. 6. Part of a discrete
curve, Sb, is drawn at the top of the figure and the different optimal bounding
lines, obtained during the incremental recognition, are given. As it can be seen,
there are only four steps in the recognition process and the slopes of the support-
ing lines decrease or increase with respect to the added points. Sb is a blurred
segment of width 2 with D4(1, 3,−3, 6) as optimal bounding line.

4 Experiments

The segmentation of a curve into blurred segments of width ν is done incremen-
tally as described in [1, 2], and as recalled in section 2.2. When the width of
the current segment becomes strictly greater than ν, a blurred segment ends at
the previous point, and a new segment is initialised. In Fig. 7, we show how the
curves on the left are segmented into blurred segments with width 2. The curve
in Fig. 7 (top) is segmented into 18 segments. The curve in Fig. 7 (bottom) is

Optimal Blurred Segments Decomposition in Linear Time 381

Fig. 7. Shark curves (top without noise, bottom with noise) decomposed into blurred
segments of width 2

a noisy version of the top one; the segmentation gives more segments: 21. If we
increase the width of the blurred segments, the number of segments decreases:
19 segments for the width 2.5, 18 segments for the width 3.

5 Conclusion

We have pursued in this paper the study of blurred segments and their appli-
cations to discrete noisy curves. Previous works of Debled-Rennesson et al [1]
were not able to decompose discrete noisy curves with minimally thin blurred
segments. We have identified the origin of this drawback and based on our the-
oretical study, we have proposed to restrict the class of blurred segments by
adding a geometrical bound on their thickness. A proper measure to control
the thickness of blurred segments bounded by a discrete line D(a, b, μ, ω) was
demonstrated to be (ω − 1)/b. Based on this modification, the recognition of
blurred segments was shown to be equivalent to the computation of the vertical
distance of the convex set of points of the discrete curves. We have presented
an incremental linear time algorithm which solves this problem with minimality
in the thickness of constructed blurred segments. Moreover, our approach also
applies to disconnected sets which opens perspectives in the study of discrete
curves with holes. The tools we used can be extended to 3D and this might lead
to decompositions of discrete surfaces into blurred linear patches.

382 I. Debled-Rennesson, F. Feschet, and J. Rouyer-Degli

References

1. I. Debled-Rennesson, J.-L. Rémy, and J. Rouyer. Segmentation of discrete curves
into fuzzy segments. In 9th International Workshop on Combinatorial Image Anal-
ysis, volume 12 of Electronic Notes in Discrete Mathematics, 2003.

2. I. Debled-Rennesson, J.-L. Rémy, and J. Rouyer. Segmentation of discrete curves
into fuzzy segments, extended version. Technical report, INRIA Report RR-4989,
http://www.inria.fr/rrrt/rr-4989.html, 2003.

3. I. Debled-Rennesson and J.P. Reveillès. A linear algorithm for segmentation of
digital curves. IJPRAI, 9(6), December 1995.

4. F. Feschet and L. Tougne. Optimal time computation of the tangent of a discrete
curve: application to the curvature. In Discrete Geometry and Computer Imagery,
Lecture Notes in Computer Science 1568, pages 31–40. Springer Verlag, 1999.

5. M.E. Houle and G.T. Toussaint. Computing the width of a set. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 10(5):761–765, 1988.

6. A. Kolesnikov and P. Fränti. Reduced-search dynamic programming for approxi-
mation of polygonal curves. Pattern Recognition Letter, 24(14):2243–2254, 2003.

7. M. Lindenbaum and A. Bruckstein. On Recursive, O(N) Partitioning of a Digitized
Curve into Digital Straight Segments. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(9):949–953, 1993.

8. A. Melkman. On-line Construction of the Convex Hull of a Simple Polygon. In-
formation Processing Letters, 25:11–12, 1987.

9. J. Perez and E. Vidal. Optimum polygonal approximation of digitized curves.
Pattern Recognition Letter, 15:743–750, 1994.

10. F.P. Preparata and M.I. Shamos. Computational Geometry: an Introduction.
Springer-Verlag, 1985.

11. J.P. Reveillès. Géométrie discrète, calculs en nombres entiers et algorithmique.
Thèse d’Etat – Université Louis Pasteur, 1991.

12. A. Rosenfeld and R. Klette. Digital Straightness – a review. Discrete Applied
Math., 139(1–3):197–230, 2004.

13. P. L. Rosin. Techniques for assessing polygonal approximations of curves. IEEE
Transactions on PAMI, 19(6):659–666, 1997.

14. A.W.M. Smeulders and L. Dorst. Decomposition of discrete curves into piecewise
straight segments in linear time. Contemporary Mathematics, 119:169–195, 1991.

15. P. Yin. A tabu search approach to polygonal approximation of digital curves.
International Journal of Pattern Recognition and Artificial Intelligence, 14(2):243–
255, 2000.

16. D. Zhang and G. Lu. Review of shape representation and description techniques.
Pattern Recognition, 37(1):1–19, 2004.

Shape Preserving Digitization of Binary
Images After Blurring

Peer Stelldinger and Ullrich Köthe

Cognitive Systems Group, University of Hamburg,
Vogt-Köln-Str. 30, D-22527 Hamburg, Germany

Abstract. Topology is a fundamental property of shapes in pictures.
Since the input for any image analysis algorithm is a digital image, which
does not need to have the same topological characteristics as the im-
aged real world, it is important to know, which shapes can be digitized
without topological changes. Most existing approaches do not take into
account the unavoidable blurring in real image acquisition systems or
use extremely simplified and thus unrealistic models of digitization with
blurring. In case of the mostly used square grids we show which binary
images can be digitized topologically correctly after blurring with an ar-
bitrary non-negative radially symmetric point spread function, which is
an important step forward to real digitization.

1 Introduction

A reliable image analysis algorithm requires a digital image having as many
properties as possible in common with its continuous preimage. One intrinsically
twodimensional property is the topology of shapes. There are several sampling
theorems known, which describe under which circumstances the topology of some
shape does not change during digitization. These theorems mostly differ in the
chosen digitization model and the used sampling grid. E.g. Pavlidis showed that
so-called r-regular shapes can be digitized with square grids without any change
in topology [4]. Serra proved the same for hexagonal grids [6] and recently we
extended these results to arbitrary sampling grids [1]. All of these approaches
used the subset digitization where a sampling point is set if and only if it lies
within the foreground region of the binary image, i.e. no blurring occurs. Unfor-
tunately, real optical systems blur the binary image before the light reaches the
optical sensors. In addition to that each sensor integrates the intensity of light
over some area. Both effects can be described as blurring – a convolution of the
ideal binary image with a suitable point spread function. A binary image can be
recovered by considering a particular level set Ll = {x ∈ IR2|f̂(x) ≥ l} of the
blurred image f̂ , i.e. by thresholding. Of course the resulting shape heavily de-
pends on the choice of the used point spread function. Latecki et al. [2, 3] used a
point spread function which is constant in its square-shaped support and proved
that r-regular images can be topologically correctly reconstructed after blurring
and sampling with a sufficiently dense square grid. In the above mentioned pre-
vious paper [1] we proved that this is also true for point spread functions, which

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 383–391, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

384 P. Stelldinger and U. Köthe

2r

Fig. 1. For each boundary point of an r-regular set there exists an outside and an
inside osculating open disc of radius r

are constant in their disc-shaped support. Up to now nothing has been known
about blurring with point spread functions which are not constant within their
support. Now we extent the results to arbitrary non-negative radially symmetric
point spread functions with bounded support. We prove that given such a point
spread function with a support of radius p and a square grid of sampling density
r′ > p, every r-regular image (r > r′ + p) will be digitized whithout any change
in the topology.

2 Regular Sets, Sampling and Reconstruction

At first we define some basic mathematical concepts. The Complement of a set
A will be noted as Ac. The boundary ∂A is the set of all common accumulation
points of A and Ac. A set A is open, if it does not intersect its boundary.
Br(c) := {x ∈ IR2|d(x, c) ≤ r} denotes the closed disc and B0

r(c) := (Br(c))0

denotes the open disc of radius r and center c. If a point x has the coordinates
x1, x2, we write (x1|x2) alternatively for x. We denote the Euclidean distance
between two points x, y as d(x, y) and the Hausdorff distance between two sets
A,B as dH(A,B) = max (maxx∈A miny∈B d(x, y),maxy∈B minx∈A d(x, y)). The
dilation of a set A with a disc Br is defined as A⊕Br := {x ∈ IR2|dH(A, {x}) ≤ r}
and the erosion is A+Br := {x ∈ IR2|dH(Ac, {x}) > r}. Lt(f) shall be the level
set with threshold value t of an image function f : IR2 → IR: Lt(f) := {x ∈
IR2|f(x) ≥ t}.

Most of the existing topological sampling theorems require the binary images
to be r-regular [1, 2, 3, 6, 7]. The concept of r-regular images was introduced
independently by Serra [6] and Pavlidis [4]. These sets are extremely well behaved
– they are smooth, round and do not have any cusps.

Definition 1. A compact set A ⊂ IR2 is called r-regular if for each boundary
point of A it is possible to find two osculating open discs of radius r, one lying
entirely in A and the other lying entirely in Ac (see Fig. 1).

In order to compare analog with digital images, two things are needed: First a
method to compare binary images and second a formal description of the pro-
cesses of sampling and reconstruction. The method for comparison we choose
is weak r-similarity (see [1, 7]). If two sets are weakly r-similar, they are topo-
logically equivalent (this criterion was chosen by Pavlidis [4]), have the same

Shape Preserving Digitization of Binary Images after Blurring 385

r’

r’2

r’2

Fig. 2. A square grid with a distance of
√

2r′ between two adjacent sampling points is
an r′-grid

homotopy tree (as used by Serra [6]) and a Hausdorff distance of at most r.
Note that topological equivalence and identity of homotopy trees are different
criteria and neither implies the other (see [1]). The usefullness of a bounded
Hausdorff distance as similarity criterion is extensively discussed in the work of
Ronse and Tajine (see [5] for a summary). The generality of their approach is
remarkable, but it cannot directly be used for our problem, since it doesn’t say
anything about the topology of a digital reconstruction and it cannot be applied
to images which are blurred by some point spread function.

Definition 2. Two bounded sets A,B ⊂ IR2 are called weakly r-similar if there
exists a homeomorphism f : IR2 → IR2 such that x ∈ A ⇔ f(x) ∈ B, and the
Hausdorff distance between the set boundaries dH(∂A, ∂B) ≤ r ∈ IR+ ∪ {∞}.
The used homeomorphism is called IR2-homeomorphism between A and B.

In most practical cases the sampling grid is a square grid, as used in several
previous sampling theorems [2, 3, 4]. In this paper we will restrict ourselves to
this kind of sampling grid, although we used a more general approach in previous
papers [1, 7]. The reason is that the restriction to square grids allows us to prove
a sampling theorem for a much wider class of point spread functions.

Definition 3. A countable set S ⊂ IR2 of sampling points with dH(S, IR2) ≤ r′,
i.e. the Euclidean distance from each point x ∈ IR2 to the next sampling point
is at most r′ ∈ IR, is called an r′-grid if S ∩ A is finite for any bounded set
A ∈ IR2. The pixel PixelS(s) of a sampling point s is its Voronoi region, i.e.
the set of all points lying at least as near to this point as to any other sampling
point. If S = a · R · ZZ2 + b for some constant a ∈ (0,

√
2r′], rotation matrix R

and vector b ∈ IR2, S is called square grid (see Fig. 2). The union of the pixels
with sampling points lying in A is the reconstruction of A w.r.t. S, also called
the S-reconstruction of A: Â :=

⋃
s∈S∩A PixelS(s). Two pixels are adjacent

if they share an edge. Two pixels of Â are connected if there exists a chain of
adjacent pixels in Â between them. Two sampling points are adjacent (connected)
if their pixels are adjacent (connected). A component of Â is a maximal set of
connected pixels.

This most obvious approach for sampling is to restrict the domain of the
image function to the sampling grid. But this ideal digitization does not take

386 P. Stelldinger and U. Köthe

(a) (b) (c)

(d) (e) (f)

Fig. 3. The definition of p-PSFs is very broad. Examples are the dirac impulse (a),
which leads to a non-blurred digitization, the disc-PSF (b) as used in [1, 7], conic PSFs
(c), truncated Gaussians (d), and even non-descending PSFs (e) and (f). While (f)
is an artificial example showing what kind of PSF is also allowed, (e) is of practical
interest, since the camera aperture can cause such diffraction patterns

into account any blurring. This can be added by a convolution of the image
with some point spread function before sampling. Digitization of a binary image
has three steps: At first the image gets blurred due to the camera optic. Then
the blurred grayscale preimage gets sampled and reconstructed (To reconstruct a
grayscale image means to fill each pixel with the image value at the corresponding
sampling point). Finally the image gets thresholded in order to get a binary
result. Mathematically the last two steps commute. Thus the definition of a
digitization without blurring completely determines how to digitize with some
blurring. You simply have to blur the original set, apply a threshold function
and digitize the result.

Definition 4. A function k : IR2 −→ IR is called a point spread function (PSF)
if
∫
IR2 k(x)dx = 1. The PSF k is a blurring PSF if it is non-negative. The PSF

kf with kf (x) := f(|x|) for some function f : IR+ −→ IR with
∫∞
0 r ·f(r)dr = 1

2π
is called radially symmetric. The function f is called the generator function of
kf . If kf is a radially symmetric blurring PSF with f(r) = 0 for every r greater
than some p, it is called a p-PSF. Now let A ⊂ IR2 be a binary set. Then its
characteristic function χA : IR2 → {0, 1} is 1 for any x ∈ A and 0 for any x �∈ A.
Given a PSF k, the blurred image of A by using k is defined as fA := k $ χA ($
denotes convolution).

With these definitions we have everything we need to prove a sampling the-
orem for blurred binary images.

Shape Preserving Digitization of Binary Images after Blurring 387

Fig. 4. After topologically correct digitization with a square grid none of the shown
configurations can occur. Thus the resulting image is well-composed

3 Sampling-Theorem for Blurred Binary Images

In a previous paper we already proved a sampling theorem for non-blurred binary
images and a theorem for binary images after blurring with a constant disc-
shaped PSF [1]:

Theorem 1. Let r ∈ IR+ and A an r-regular set. Then A is weakly r′-similar
to any S-reconstruction with some r′-grid S, 0 < r′ < r.

In case of square grids this implies that the S-reconstruction of an r-regular set
is well-composed, as defined by Latecki (see [3]). This means, the digital image
does not contain any of the pixel configurations shown in Fig. 4

Theorem 2. Let r, r′, p ∈ IR+ be positive numbers with r′ + p < r and let A be
an r-regular set, kp a p-PSF, and fA = kp $ χA the blurred image of A. Further
let Ll be the level set of fA with some level l and let S be an arbitrary r′-. Then
the S-reconstruction L̂l of Ll is weakly (r′ + p)-similar to A.

In order to generalize these results to other types of point spread functions we
restricted ourselves to square grids. By doing this we are able to show that any
p-PSF with p < r′ can be used for digitization with an r′-grid, such that any
r-regular set (r > r′ + p) is topologically equivalent to its digital reconstruction:

Theorem 3. Let r, r′, p ∈ IR+ be positive numbers with p < r′ and r′ + p < r
and let A be an r-regular set, kp an arbitrary p-PSF, and fA = kp $ χA the
blurred image of A. Further let Ll be the level set of fA with some level l and
let S be a square grid, which is an r′-grid. Then the S-reconstruction L̂l of Ll is
weakly (r′ + p)-similar to A.

Proof. With r′ > p follows 2r′ > r′ + p. Now let s ∈ IR+ be any number in the
interval (r′ + p, 2r′]. Then A is s-regular. If we can prove the theorem for such
an s instead of r, it is also true for r > s. We make use of the inequality s ≤ 2r′

below.
Due to the support of the PSF, fA(x) = 1 for any x ∈ A+Bp and analogously

fA(x) = 0 for any x �∈ A ⊕ Bp. Due to s-regularity of A, the sets B := A + Bp

and C := A ⊕ Bp are both (s − p)-regular and weakly p-similar to A. Due
to Theorem 1 their S-reconstructions Â, B̂ are weakly (r′ + p)-similar to A.
Obviously B̂ ⊆ L̂l ⊆ Ĉ, which implies that the Hausdorff-distance between

388 P. Stelldinger and U. Köthe

cA
A

x’

x y
p

(−1|0) (1|0)

r=1r=1

Fig. 5. At least one of the sampling points being adjacent to x lies in the shaded sector

∂A and ∂L̂l is bounded by r′ + p. Thus we only have to show that Ll is IR2-
homeomorphic to A. This is the case if any sampling point x ∈ L̂l is (directly)
connected in L̂l with some sampling point y ∈ B̂ and if any sampling point
x �∈ L̂l is connected in L̂c

l with some sampling point y �∈ Ĉ, because then no
additional component or hole can occur. We show this by proving that for any
x ∈ S with fA(x) ∈ (0, 1) there exists an adjacent sampling point x≥ with
fA(x≥) ≥ fA(x) and an adjacent sampling point x≤ with fA(x≤) ≤ fA(x). This
implies that the configurations shown in Fig. 4 cannot occur.

Let x ∈ S be a sampling point with fA(x) ∈ (0, 1) and let y ∈ ∂A be the
boundary point of A being nearest to x. Due to s-regularity there exists a unique
nearest boundary point. Without loss of generality let x = (d|0), y = (0|0), s = 1
(any other case can be derived by choosing an appropriate scale and coordinate
system) and let B0

1((1|0)) be the inside and B0
1((−1|0)) be the outside osculating

s-disc of A in y (see Fig. 5). Then the four sampling points being adjacent to x lie
on the circle with radius

√
2r′ and center x. At least one of them, which will be

noted as x′, lies on the rightmost quarter circle which is bounded by the points
(d+r′|r′) and (d+r′|−r′) (see Fig. 5). Now let D1 = 1+d be the distance between
(−1|0) and x, let D2 =

√
(1 − r′ − d)2 + r′2 be the distance between (1|0)and

(d + r′|r′) and let D3 be the distance between (1|0) and x′ (see Fig. 6). Then
D3 ≤ D2 since the center (d|0) of the circle containing x′ is to the left of (1|0).

Now let B := Bc
1 be a binary image, which is the complement of the unit

disc. By using B we construct a helper function h : [1 − p, 1 + p] −→ [0, 1] with
h(z) := fB((z|0)) (see Fig. 7). Obviously h is monotonically increasing since the
non-zero area Bp((z1|0))∩B of the image B covered by the PSF at postion (z1|0)
is a translated superset of the same area Bp((z2|0)) ∩ B at position (z2|0) for

Shape Preserving Digitization of Binary Images after Blurring 389

D2

r = 1

(1| 0)(−1| 0)
yx

x’

A

p

Ac

(d+r’| r’)

1−(d+r’)r’

D3

D1 = 1+d

Fig. 6. The distance D3 between the center of the inside osculating disc and the adja-
cent sampling point x′ is at most equal to the distance D2

any z1, z2 ∈ [1 − p, 1 + p] with z1 > z2. The two circles ∂B1 and ∂Bp((z|0)) have
at most two points in common. There exists exactly one other circle of radius 1
sharing these points. This circle is centered in (1−p2

z + z|0). As Fig. 7 illustrates,
1 − h(z) ≥ h(1−p2

z).
Since the outside osculating disc B1((−1|0)) is a subset of Ac (see Fig.

5), fA(x) is at most equal to h(D1). Analogously since the inside osculating
disc B1((1|0)) is a subset of A, fA(x′) is at least equal to 1 − h(D3). With
D3 ≤ D2 it follows that 1−h(D2) ≤ 1−h(D3). Thus we only have to show that
h(D1) ≤ 1 − h(D2) in order to prove fA(x) ≤ fA(x′).

We know that −p ≤ d ≤ p and 0 ≤ 1 − r′ ≤ 1
2 (because 1 = s ≤ 2r′). Now

suppose to the contrary, h(D1) > 1 − h(D2). Then h(D1) > h(1−p2

D2
) and due to

montony of h follows D1 > 1−p2

D2
> 1−(1−r′)2

D2
. By substitution of D1 and D2 we

get 1 + d > 1−(1−r′)2√
(1−r′−d)2+r′2 . Since both sides of the inequation are positive, we

can square it, and further simplification leads to

(1 − r′) − d

(1 + d)2
(2 + 2d + 2d2 + d3 − (2 + d)2(1 − r′) + d(1 − r′)2 + (1 − r′)3) < 0.

Since the fraction is always non-negative for the allowed d, r′, we only have to
look at the rest of the inequation. This inequation is equivalent to both of the
following inequations:

390 P. Stelldinger and U. Köthe

p

(z|0) 0)(z

21−p +z

Fig. 7. The helper function h describes the result of blurring the complement of the
unit disc image with the PSF at some position with distance z to the origin

2(1 + d)(1 − 2(1 − r′)) + (1 − r′)((1 − r′) + d)2+
2d2(1 − (1 − r′)) + (−d)((1 − r′)2 − d2) < 0

2(1 + d)(1 − 2(1 − r′)) + d(1 − r′)((1 − r′) − d)+
d3 + (1 − r′)3 + 2d2 < 0

In case of d < 0 each addend of the first inequation consists completely of non-
negative factors and in case of d ≥ 0 each addend of the second inequation
consists completely of nonnegative factors for |d| ≤ p < 1− r′ ≤ 1

2 . Thus for any
d one of the inequations is obviously false which implies that the assumption
h(D1) > 1 − h(D2) is not true. It follows that for any x ∈ S with fA(x) ∈ (0, 1)
there exists an adjacent sampling point x≥ with fA(x≥) ≥ fA(x) and analo-
gously there exists an adjacent sampling point x≤ with fA(x≤) ≤ fA(x). �

Since the class of possible point spread functions is very general, this sam-
pling theorem can be applied to much more practical applications than previous
ones. Unfortunately the restriction p < r′ is very strict. We conjecture that the
theorem is true for any p with p + r′ < r, but we were up to now not able to
prove this formally.

4 Conclusions

We proved a sampling theorem which can be summarized in an extremely simple
statement: By using a p-PSF and a square grid, which is an r′-grid (with r′ > p),
we can digitize any r-regular binary image without any topological changes if
only r > r′ + p. This is true for any threshold value used for binarization.

Realistic cameras have very complicated point spread functions and often one
does not know the exact PSF. Due to our result one does not have to know this, if
only one can assume that it is nonnegative, radially symmetric and has a bounded

Shape Preserving Digitization of Binary Images after Blurring 391

support of known (or estimated) radius. Thus our result can be applied to real
camera acquisition systems much better than the findings of Latecki et al. [2, 3]
and some of our previous papers [1, 7], where only point spread functions were
allowed which are constant in their whole support. Unfortunately our proof has a
restriction to the maximal size of the PSF relatively to the sampling density. We
think that this is not necessary and conjecture that our results can be generalized
to any p-PSF with r > p + r′. Additionally we think that equivalent theorems
can be shown for other sampling grids like hexagonal or even irregular grids, but
we cannot prove this yet.

References

1. Köthe, U., Stelldinger, P.: Shape Preserving Digitization of Ideal and Blurred Binary
Shapes. In: I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 82-91, Springer,
2003.

2. Latecki, L.J., Conrad, C., Gross, A.: Preserving Topology by a Digitization Process.
Journal of Mathematical Imaging and Vision 8, pp. 131–159, 1998.

3. Latecki, L.J.: Discrete Representation of Spatial Objects in Computer Vision.
Kluwer, 1998.

4. Pavlidis, T.: Algorithms for Graphics and Image Processing. Computer Science
Press, 1982.

5. Ronse, C., Ta ine, M.: Morphological Sampling of Closed Sets. Image Analysis and
Stereology 23, pp. 89–109, 2004.

6. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, 1982.
7. Stelldinger, P., Köthe U.: Shape Preservation During Digitization: Tight Bounds

Based on the Morphing Distance. In: B. Michaelis, G. Krel (Eds.): Pattern Recog-
nition, LNCS 2781, pp. 108-115, Springer, 2003.

j

A Low Complexity Discrete Radiosity Method

Pierre Y. Chatelier and Rémy Malgouyres

LLAIC, Clermont-Ferrand
{chatelier, remy.malgouyres}@llaic3.u-clermont1.fr

Abstract. Radiosity in 3D scenes is usually computed using a dis-
cretization of the surfaces into patches. A discretization into voxels is
possible, coupled with the use of discrete geometry. An algorithm for
radiosity solving with voxels is introduced, lowering the theoretical com-
plexity to an O(N log N) + O(N), where the O(N) is largely dominant
in practice, so that the apparent complexity is linear for time and space,
with respect to the number of voxels in the scene. The method also fits in
RAM and does not need disk storage. Instead of 3D discrete line traver-
sal, a new algorithm is described to perform visibility computation. The
voxel-based radiosity equation assumes the ideal diffuse case and uses
solid angles similarly to the hemicube.

Keywords: Radiosity, voxels, discrete geometry, linear complexity, vis-
ibility, ideal diffuse case.

1 Introduction

In computer graphics, radiosity is known to globally provide smoother results
than simple ray-tracing, since it aims at diffusing light in a better way. The
main drawback is the cost involved by the new physical properties to manage,
that may still be simplified to be reasonably expensive. But compared to simple
ray-casting, the complexity remains easily controllable. Mixing radiosity and
ray-tracing usually gives the best results.

Radiosity has been largely studied, but has also been limited to a discretiza-
tion of the surfaces into polygonal patches. A discretization into voxels (elemen-
tary volume elements) coupled with discrete geometry can bring new possibilities
of fast visibility computation, especially for complex scenes where the patches do
not suit very well. The goal of this paper is to bring improvements to a previous
voxel-based discrete radiosity method introduced in [5]. We present a new rep-
resentation of the visibility problem, and a new data flow in computing, which
lead to a quasi-linear time and space complexity in radiosity solving. The new
algorithm consists in handling the visibility problem globally for each direction
in space. The space is partitioned into lists of voxels, where “neighbors in the
list” means “neighbors in terms of visibility”. Classical ray traversal becomes
useless and no time is spent in emtpy spaces.

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 392–403, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Low Complexity Discrete Radiosity Method 393

Then, the radiosity can be propagated between the voxels, using the com-
puted visibility information. By iterating within a set of directions, the radiosity
in the scene converges toward a solution of a discretized radiosity equation. A
tool similar to the hemicube [2] is used, factorizing some computations and using
the notion of solid angle.

This algorithm is designed to work on a given set of voxels. The discretization
step, and the visualization with radiosity, do not belong to the algorithm, and
can be derived from [5] for instance.

2 The Radiosity Equation

Radiosity is defined as the total power of light leaving a point. In practice, this
notion is useful provided that some assumptions are made about the proper-
ties of the surfaces. We introduce the equation at first, then we explain how it
can be interpreted. This equation comes from simplifications of a more general
case, which uses the notion of radiance [4]. Its general continuous form is the
following:

B(x) = E(x) + ρd(x)
∫

y∈scene

B(y)
cos θx cos θy

π ‖ x − y ‖2 V (x, y)dy (1)

An intuitive explanation of Equation (1) is: “the total power of light leaving a
point x (the B(x) term), is defined by two terms: the proper emittance of this
point as a light source (the E(x) term), and some re-emission of the light it
receives from its environment (the integral)”.

– B(x) and B(y) makes B(·) present in both sides of the equality. It reflects
the interdependence between a point and its environment. It also supposes
that each point emits light uniformly in every direction.

– V (x, y) is a visibility function, equal to 1 if x and y are mutually visible,
and 0 otherwise. This function makes it possible to write an integral over
the whole scene.

– A point re-emits only a fraction ρd(x) of the light that it receives. Assum-
ing that this factor depends neither on the outgoing direction, nor on the
direction of the incoming light, is known as the ideal diffuse hypothesis.

– To quantify how much of an object is seen from a point, the term cos θydy
‖x−y‖2 , is

a direct transcription of the definition of a solid angle. We denote by θy the
angle between the direction (xy) and the normal vector at point y.

– Incident light is more or less important depending on whether it is received
from right ahead or tangently. The more tangent a ray is, the less partici-
pation it has in the re-emitted light. This is represented by cos θx, where θx

is the angle between the direction (xy) and the normal vector at point x.
Additionally, cos θx is floored to 0 to prevent light coming from below to be
re-emitted.

– The π factor is a normalization term deriving from radiance considerations.

394 P.Y. Chatelier and R. Malgouyres

3 A Discrete Radiosity Equation

3.1 Discretizing the Equation

This section is a reminder of how the radiosity equation has been discretized in
[5]. First, let us denote by SR(x) a virtual sphere of radius R centered on x, by
σ a point on this sphere, by y(x, σ) the first real surface point met from x in the
half-line [x;σ). The visibility problem is, like in the hemicube [2], translated to
a solid angle computation on a virtual surrounding shape: a sphere.

∫
y ∈ scene

B(y)
cos θ(x, y) cos θ(y, x)

π ‖ x − y ‖2 V (x, y)dy

=
∫

σ∈SR(x)

B(y(x, σ))
cos θ(x, y(x, σ))

π

(
cos θ(y(x, σ), x)

d(y(x, σ))
‖ x − y(x, σ) ‖2

)
︸ ︷︷ ︸

solid angle as seen from x

=
∫

σ∈SR(x)

B(y(x, σ))
cos θ(x, y(x, σ))

π
dσ

Now, denoting by x a voxel, by ΣR(x) a discrete sphere of radius R centered
on x, by σ a voxel of ΣR(x), by V (x, σ) the voxel of y(x, σ), by Â(−→xσ) an
approximation of dσ, we can write:

∫
σ∈SR(x)

B(y(x, σ))
cos θ(x, y)

π
dσ ≈

∑
σ∈ΣR(x)

B(V (x, σ))
cos θ(x, V (x, σ))

π
Â(−→xσ)

We approximate Equation (1) by the following linear system:

B(x) = E(x) + ρd(x)
∑

σ∈ΣR(x)

B(V (x, σ))
cos θ(x, V (x, σ))

π
Â(−→xσ) (2)

In Equation (2), the expensive information is the function V (x, σ), (the first
voxel encountered from x in the direction of σ). In [5], it is precomputed, and
thus is very similar to the form factors of the classical approach. The term
Â(−→xσ) can also be easily precomputed. Note that V (x, σ) is not well defined,
since several discrete rays may cross x and σ (see Fig. 1). This is not a problem
since each possible ray leads to an acceptable solution.

σ

x

object

σ

x

object

σ

x

object

Fig. 1. Given x and σ, several rays may be used to find a V (x, σ)

A Low Complexity Discrete Radiosity Method 395

3.2 Solving the Equation

To solve Equation (2), a converging iterative method similar to the one used
with patch-based radiosity can be used. It usually relies on Gauss-Seidel relax-
ation. If we consider the equation under its form B = E + M.B, where B is a
vector of elements and M a matrix of factors, some properties of M ensure the
sequence Bn+1 = E + M.Bn to converge toward a limit, which is a solution of
the discrete equation. Roughly speaking, this is a transcription of light gather-
ing, each iteration going a step further in light re-emission. The convergence is
expected since light is progressively absorbed. Technically, each iteration consists
in propagating packets of radiosity between mutually visible voxels.

3.3 Computations Made in [5]

The goal of this paper is to introduce a new way to handle V (x, σ). In [5], it was
precomputed by a kind of discrete ray-tracing method. Since the voxelization
that we use produces an octree, it was easy and efficient. This precomputation
is however very expensive in terms of time and storage.

The Â(−→xσ) term has not been modified since [5]. As with the hemicube, each
exterior voxel face of the surrounding sphere is a kind of screen cell. Thus, it
is associated to a solid angle and each voxel is given a value summing the solid
angles of its exterior faces. Moreover, the discrete sphere is considered to be
global, there is not one sphere per voxel. Therefore, Â(−→xσ) can rather be written
Â(−→σ), and we call it a direction factor. A radius of 38 for the sphere produces
about 15, 000 direction factors. This is a small amount of data, and requires only
a few seconds to be pre-computed. It is also a good parameter for the quality of
the voxel-based radiosity algorithm.

4 Discrete Geometry

The algorithm that we introduce uses some notions of discrete geometry. Section
4.1 is a reminder, and Section 4.2 is the proof of an interesting partitioning
property.

4.1 Discrete Lines

A 2D discrete line [6] whose directing vector is (a, b) can be represented by the
set of points:

{(x, y) ∈ Z2/μ ≤ ay − bx < μ + ω}

where ω denotes the arithmetical thickness of the line, and μ sets the position
of the line. The higher ω, the thicker the line. If ω is too small, the set of points
becomes disconnected. ω is related to the connectivity of the line (see Fig. 2).
If ω = max(|a|, |b|), the line is 8-connected and it is called the näıve case. If
ω = |a| + |b|, the line is 4-connected and it is called the standard case.

396 P.Y. Chatelier and R. Malgouyres

Fig. 2. (2D) {4-8}-neighborhood Fig. 3. (3D) {6-18-26}-neighborhood

A notion of 3D discrete line has also been defined [3], where the näıve (26-
connected) and the standard (6-connected) cases are also defined, as:

(x, y, z) ∈ Z3/

{
μ ≤ cx − az < μ + ω

μ′ ≤ bx − ay < μ′ + ω′

It is noteworthy that a 3D discrete line represents the intersection between two
discrete planes, each one being the orthogonal extrusion of a 2D discrete line
included in one of the coordinate planes. Alternatively, one can say that a 3D
discrete line projects onto two 2D discrete lines that are sufficient to retreive the
3D line. The connectivity (see Fig. 2 and Fig. 3) is related to ω and ω′. If the two
2D projections are näıve (resp. standard), the 3D line is näıve (resp. standard)
itself.

4.2 Partitioning the Space into Lines

In this section we set and prove that the space can be partitioned into parallel
3D discrete lines, along a given direction. This means that a voxel belongs to
one and only one of these lines, which can be explicitly computed.

Proposition 1. Let us denote by Z3
∗ the set Z3\{(0, 0, 0)}. Given an integer

vector −→v ∈ Z3
∗, a voxel space can be partitioned into a set of näıve, or a set of

standard, 3D discrete lines, whose direction vector is −→v .

Proof. Let −→v = [a, b, c], with (a, b, c) ∈ Z3
∗, (a, b, c) having no common divisor

other than 1. We assume without loss of generality that a ≥ b ≥ c ≥ 0.
A 3D discrete line with −→v as directing vector is defined by two 2D projections.

The connectivity of the 3D line and of its projections are related, so that we
can study separately the näıve case and the standard case. Let us denote the
arithmetical thicknesses by:

näıve case:

⎧⎪⎨⎪⎩
ωab = max(|a|, |b|) �= 0
ωac = max(|a|, |c|) �= 0
ωbc = max(|b|, |c|)

standard case:

⎧⎪⎨⎪⎩
ωab = |a| + |b| �= 0
ωac = |a| + |c| �= 0
ωbc = |b| + |c|

Since a ≥ b ≥ c ≥ 0, the relevant 2D projections are in the planes (Oxy) and
(Oxz). This is why only ωbc may be null. The projections are defined by:{

{(x, y, z) ∈ Z3/z = 0 and μab ≤ −bx + ay < μab + ωab} projection in (Oxy)
{(x, y, z) ∈ Z3/y = 0 and μac ≤ −cx + az < μac + ωac} projection in (Oxz)

A Low Complexity Discrete Radiosity Method 397

Thus, the 3D discrete line is equivalent to the set of all (x, y, z) ∈ Z3 such that:{
μab ≤ −bx + ay < μab + ωab

μac ≤ −cx + az < μac + ωac

Since a, b, c, ωab, ωac are fixed, only the position of the line may be chosen and
we denote such a set of voxels by L(μab, μac). Let us introduce the set of 3D
discrete lines denoted by {Li,j}(i,j)∈Z2 = {L(i ∗ ωab, j ∗ ωac)}(i,j)∈Z2

Given i and j, an Li,j 3D discrete line is defined by:{
i ∗ ωab ≤ −bx + ay < i ∗ ωab + ωab

j ∗ ωac ≤ −cx + az < j ∗ ωac + ωac

or

{
i ∗ ωab ≤ −bx + ay < (i + 1) ∗ ωab

j ∗ ωac ≤ −cx + az < (j + 1) ∗ ωac

Given a voxel (x, y, z) ∈ Z3, this voxel belongs to Lk,l with k =)−bx+ay
ωab

*
and l =)−cx+az

ωac
* (where)x* denotes the “floor” function).

Moreover, the Li,j ’s are pairwise disjoint and thus they constitute a partition.
Indeed, let us consider a voxel v = (x, y, z) belonging to Li,j and to Li′,j′ , with
(i, j) �= (i′, j′). We assume for instance i < i′, because if i = i′, the following
reasoning can still be held, replacing i by j and say that j < j′.

v ∈ Li,j and v ∈ Li′,j′ ⇒
{
i ∗ ωab ≤ −bx + ay < (i + 1) ∗ ωab

i′ ∗ ωab ≤ −bx + ay < (i′ + 1) ∗ ωab

⇒
{

−bx + ay < (i + 1) ∗ ωab ≤ i′ ∗ ωab

i′ ∗ ωab ≤ −bx + ay

⇒ −bx + ay < −bx + ay which is impossible

As a conclusion, given a direction, and a näıve or standard connectivity, the
set of corresponding Li,j ’s is a partition of the voxel space into 3D discrete lines
following this direction. Then, a simple operation using the floor function allows
to deduce, from the coordinates of a voxel, the Li,j line it belongs to.

5 Voxel-Based Radiosity

5.1 A New Approach of Discrete Radiosity

The main problem of the approach presented in [5] lies in the required informa-
tion about visibility, stored as a precomputed set of V (x,−→σ). Such information
is very expensive to store for each voxel of the scene, and usually does not fit in
RAM. A secondary memory is necessary. A scene with 2 × 106 voxels would
basically generate about 80 GB of data. Giving full sense to discrete geometry,
a new approach can be introduced, that deduces visibility on-the-fly. No pre-
computations are needed, and no information has to be stored on disk. Both
time and space complexity are improved by this method. This can be done by
transforming the visibility problem.

398 P.Y. Chatelier and R. Malgouyres

a set of voxels relationships in the same set under two directions

Fig. 4. Visibility solving by finding voxels on the same 3D discrete lines

Transforming the Visibility Problem: Instead of iterating on each voxel x,
and querying V (x,−→σ), (i.e. the first voxel visible from x in the direction of −→σ),
we can rather iterate on −→σ and compute a whole bunch of V (x,−→σ) at a time for
a fixed −→σ . In this case, we represent a ray of light by the list of every intersected
voxels, as if there was no occlusion. Thus, one list encodes several information
about visibility in the given direction of the ray. If x and y are two consecutive
voxels (not necessarily neighbors in space) in a ray (list) of direction −→σ , then
we can assume that y = V (x,−→σ) (see Fig. 4).

Building the lists could still done by discrete ray-tracing, which has been
largely studied [1] [9] [8], but we propose another approach, more adapted to
the current context, where we have to compute at the same time the visibility of
every couple of voxels. Our approach does not use any traversal ; in our model,
the voxels of empty spaces are not represented nor traversed : they are implicitly
ignored. To perform this approach, we have addressed two difficulties: how to
quickly find the ray (or 3D discrete line) each voxel belongs to, and how to keep
at a low cost a sorted representation of this ray to handle the analogy between
consecutiveness and visibility.

5.2 Efficient Solving of the Visibility Problem

Finding Which Line a Voxel Belongs to: We have proved in Section 4.2
that the space could be partitioned into 3D discrete lines, each one characterized
by a couple of integers (i, j). Such a couple is extractable in constant time from
the coordinates of a voxel, for a particular direction. With appropriate data
structures, a linear time complexity can then be ensured to link each voxel to
its line.

We represent each discrete ray by a list of the voxels it contains, not neces-
sarily sorted at first. The set of all lists is stored in a 2D array, indexed by i
and j, which are bounded by the scene geometry. Given a direction, finding the
(i, j) list of a given voxel is a constant-time operation. Then, finding this list in
the array of lists is also a constant-time operation. Then, adding the voxel to
this list is a constant-time operation, if no sorting is done. Therefore, the overall
complexity of the dispatching process, for a given direction, for one voxel, is a
constant time. For N voxels, the time complexity of this dispatching process is
obviously O(N).

V oxel
O(1)"−→

extracting
(i, j)

O(1)−→
finding

list
O(1)"−→

inserting
increased list

A Low Complexity Discrete Radiosity Method 399

Finding Consecutive Voxels in the Visibility Lists: The lists holding the
voxels are not sorted at first: they do not reflect the visibility between voxels.
Hence, at first sight, the list filling step should be followed by, or mixed up
with a sorting step. However, the complexity would increase up to worst case
O(N logN). We show how appropriate data structures can lead to avoid this
sorting step.

Building Sorted Lists Without Extra Cost: Sorting the lists is not required
if they can be filled in a way such that the voxels are already sorted in each of
them. To ensure that property, an appropriate traversing order must be found
for the data structure supplying the voxels to the list-filling algorithm.

A kind of wavefront, perpendicular to the current direction, and evolving
in that direction, encounters the voxels of the scene in their natural order for
the given direction. In the discrete case, the wavefront can be aligned along a
coordinate axis (see Fig. 5).

It is worth noting that the voxels in a 3D discrete line are ordered with
respect to a lexicographic order on their coordinates x, y and z, depending
on the directing vector. Hence, the wavefront itself can be implemented by a
lexicographic order. The relative order of x, y and z is not relevant for the
discrete lines we use, since their “thickness” is at most 1, due to our choice of ω.
In this case, no “bubble” can appear, which would require attention (see Fig. 6).

In the 3D case, the lexicographic order is applied on x, y, and z depending
on the considered direction. For a direction −→v = (a, b, c), the lexicographic
order must only fulfill the following conditions: if a (resp. b, resp. c) ≥ 0, then x
(resp. y, resp. z) is considered in ascending order, otherwise in descending order.
For instance, with intuitive notations, the lexicographic order for −→v = (−1, 5, 2)
can be defined as ≺x↓y↑z↑, ≺x↓z↑y↑, ≺y↑x↓z↑, ≺y↑z↑x↓, ≺z↑x↓y↑, or ≺z↑y↑x↓.

Moreover, since ≺x↓y↑z↑ gives the reverse order of ≺x↑y↓z↓ (for instance), only
4 out of 8 different lexicographic orders are to be coded to handle any direction.

So far, no conditions were required on the data structure supplying the voxels
to the radiosity algorithm. But we need the ability to be given the voxels with
respect to one of the four lexicographic order previously defined. In practice,
without assumptions on the original data structure, it is possible to use four
additional arrays, one for each lexicographic order, containing sorted pointers to
the N voxels. This is affordable as a precomputation, at worst in O(N logN)
time, and in practice only needs a few seconds. Its practical time cost is totally
negligible aside the radiosity solving step.

5.3 The Final Algorithm

We have shown in the previous section how to handle the visibility problem
with a low complexity. To solve the voxel-based radiosity equation, a converging
iterative method is used, as described in [5]. The final algorithm is described on
page 401.

Time Complexity: The algorithm requires two parameters, which are the ra-
dius R of the discrete sphere used to compute the direction factors, and a num-

400 P.Y. Chatelier and R. Malgouyres

direction

intuitive
wavefront

a) discrete
wavefront

b) an appropriate
lexicographic order

c)
another appropriate
lexicographic order

d)

Fig. 5. An appropriate traversing order of voxels respects their natural order in the
discrete lines. a) A wavefront encounters the voxels in the good order. b) In the discrete
case, the wavefront may be oriented along a coordinate axis. c) and d) This wavefront
can be represented by a lexicographic order on the coordinates

Fig. 6. A 3D discrete line whose thickness is limited cannot hold such a bubble, for
which the relative order of x, y and z is discriminative

ber I of iterations to converge to a radiosity solution (usually less than 6). The
number of directions is an O(R2) (usually a few thousands). For N voxels in the
scene, the time complexity is:

4 × O(N log N)︸ ︷︷ ︸
preparing lexico-

graphic orders

+ I × O(R2) × (O(N) + O(N))︸ ︷︷ ︸
radiosity solving

= O(N log N)︸ ︷︷ ︸
negligible

in practice

+O(I × R2 × N)

Space Complexity: We assume that the N voxels modeling the 3D scene are
already encoded in an O(N) data structure. Given a direction, the set of lists we
use for partitioning contains exactly one reference to each voxel, so that O(N) is
expected for the total space complexity. Four precomputed lexicographic arrays
of voxels are needed, this is an O(N). We also need an array to store the lists.
Since the lists form a partition of the 3D space, the number of lists needed for
a scene is related to the square of the width of the 3D scene. Only the surface
of objects are discretized, so that the width of the scene is usually an O(

√
N).

Thus, the number of lists is at most an O(N), since in the worst case, where
each list contains a single voxel, there are exactly N lists. The lists are reset
for each direction, so that the hidden constant depends solely on the geome-
try of the scene, not on the number of directions. Thus, the hidden constant
remains small, and the space complexity needed by our algorithm is an O(N)
which merges with the O(N) already needed by the data structure used for
modeling.

A Low Complexity Discrete Radiosity Method 401

Prepare the needed four lexicographic orders;

Compute a set of discrete directions;
Pour each direction faire

compute and store the associated direction factor;
Fin Pour

[the number of iterations is a small constant]
Pour iterations = 1 to MaxIterations faire

[the number of directions is a big constant]
Pour each direction faire

[dispatching step: O(N)]
Select the appropriate lexicographic order;
Pour each voxel (with respect to the lexicographic order) faire

[The voxels are naturally sorted at insertion]
Add it to the back of the list (3D discrete line) it belongs to;

Fin Pour
[propagation (solving) step: O(N)]
Pour each list faire

propagate radiosity between contiguous voxels;
Fin Pour
reset the lists;

Fin Pour

Fin Pour

Algorithm 1: Quasi-linear radiosity algorithm

6 Experimental Results

Improvements over Previous Voxel-Based Method: The scene presented
in [5] is made of 310,000 patches, and has been discretized into about 2 × 106

voxels. It has been computed with the new algorithm in the same conditions
as with the previous one: 6 iterations, about 15,000 directions, on an Athlon
900 MHz with 1.5 GB of RAM. It has shown a 60% time improvement, for
identical result quality (27 hours instead of 72). A main advantage is also that
no hard disk space is needed since the whole computation can be done in RAM.

Storing Some Results on Disk to Optimize: Each iteration uses the same
set of directions and leads to the same computations to retrieve the visibility of
the voxels along the rays of a given direction. This is not dramatical because there
are very few iterations. However, if disk space is available, the lists computed
during the first iteration can be dumped and recalled in the following iterations.
Tests have shown that it results in a 20% time regression for the first iteration,
and a 30% time improvement for the following ones. On one hand, more resources
help optimizing, on the other hand, it does not dramatically outperform the

402 P.Y. Chatelier and R. Malgouyres

This voxel only is
lit from the left

{More realistic
if these ones

are lit too

Light source Object

3D discrete ray of light

Fig. 7. Small correction on propagation for tangent rays

RAM-only approach, especially if we consider the huge required amount of hard
disk: basically, it is about 60 GB for 2 × 106 voxels and 15,000 directions.

Visual Artifacts: A roughly discretized scene may contain classical artifacts,
when rendering with radiosity information supplied by the present form of the
algorithm: light leaks, or sharp shadows might be observed. A low number of
directions in the parametrization may as well generate irregularities on surfaces
that should render smooth in reality. However, an artifact specific to our al-
gorithm has a specific workaround. Let us consider a ray almost tangent to a
surface. Chances are high that many contiguous voxels of the surface belong to
the same list representing the ray. With basic visibility, only the first voxel of the
surface encountered from the light source would receive light, the others being
occluded. With a limited number of directions, this could prevent some voxels
in the middle of large flat surfaces to ever receive light directly from the light
sources that are low in their horizon. To address this issue, a small correction
can be done, that spread the light received by a voxel to its immediate neighbors
(see Fig. 7).

7 Conclusion and Perspectives

A voxel-based radiosity algorithm has been presented, with a quasi-linear com-
plexity in time and a linear complexity in space, with respect to the number of
voxels encoding the scene. Many experiments remain to be done in order to im-
prove this approach of radiosity. First, instead of limiting ourselves to the ideal
diffuse case, we may add to our radiosity the management of complex Bidirec-
tional Reflectance Distribution Functions (BRDF). We are also studying another
voxelization method found in [7], a density approach showing nice results cou-
pled with discrete ray-tracing. We are actually investigating to see if radiosity
plugs well into this approach. At last, the algorithm suits well for clustering, so
that our implementation let us hope for a linear improvement with respect to
the number of nodes. A basic parallelization would dispatch the directions, so
that each node handles a subset of directions, but we are also studying a way to
dispatch the voxels on the nodes.

A Low Complexity Discrete Radiosity Method 403

References

1. John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing.
In Eurographics ’87, pages 3–10. Elsevier Science Publishers, Amsterdam, North-
Holland, 1987.

2. Michael F. Cohen and Donald P. Greenberg. The hemi-cube: a radiosity solution
for complex environments. In SIGGRAPH ’85: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pages 31–40. ACM
Press, 1985.

3. Isabelle Debled-Rennesson. Étude et reconnaissance des droites et plans discrets.
PhD thesis, Université Louis Pasteur, Strasbourg, 1995.

4. François X. Sillion and Claude Puech. Radiosity & Global Illumination. Morgan
Kaufmann Publishers, Inc., 1994.

5. Rémy Malgouyres. A discrete radiosity method. In Achille Braquelaire, Jacques-
Olivier Lachaud, and Anne Vialard, editors, Discrete Geometry for Computer Im-
agery, 10th International Conference, DGCI 2002, Bordeaux, France, pages 428–438.
Springer, April 2002.

6. Jean-Pierre Reveillès. Géometrie discrète, calcul en nombres entiers et algorith-
mique. PhD thesis, Université Louis Pasteur, Strasbourg, 1991.

7. M. Sramek and A. Kaufman. Vxt: a c++ class library for object voxelization.
Volume Graphics, pages 119–134, 2000.

8. Nilo Stolte and René Caubet. Discrete ray-tracing of huge voxel spaces. Comput.
Graph. Forum, 14(3):383–394, 1995.

9. R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer Graph-
ics & Applications, 12(9):19–28, 1992.

A Statistical Approach for Geometric
Smoothing of Discrete Surfaces

Bertrand Kerautret and Achille Braquelaire

LaBRI, Laboratoire Bordelais de Recherche en Informatique,
UMR 5800, Université Bordeaux 1,

351, cours de la Libération,
33405 Talence, France

{kerautre, achille}@labri.fr

Abstract. In this article we propose an original method for discrete sur-
face smoothing. This method is based on a statistical estimation of the
discrete tangent plane on the voxels of the discrete surface. A geomet-
rical constraint is used to control the recognition of the tangent plane.
The resulting surface representation allows us to get both smooth normal
vectors of the surface and a smooth surface mesh while preserving the
geometrical properties of the surface.

Keywords: Digital surfaces, smoothing surface mesh, euclidean nets,
discrete normals, visualization, smoothing.

1 Introduction

Processing data sets of three-dimensional discrete images brings up the problem
of extraction and representation of geometric features, and of visualization of the
surface of 3D objects. The initial volume object can be visualized as a set of 6-
connected voxels (also called cuberille representation) [7]. But this representation
in the discrete space is neither convenient for the analysis of geometric properties
of the object nor for the visualization.

A polygonal representation of the boundary of a discrete object is usually used
to represent its surface and to perform rendering. One of the first approaches to
obtain such a representation was the marching cube algorithm [9]. This method
has several drawbacks both from the geometrical and the topological points of
view. Other algorithms exist which associate a surface mesh to a discrete surface.
For example Türmer and Wütrich triangulate the surfaces by associating centers
of voxels to each other [14]. Since the direct rendering of the surface obtained
after such a triangulation is not smooth, normal vectors are computed in discrete
space using a varying neighborhood size [12, 13]. Then the surface is rendered
using Gouraud shading [6]. This rendering technique gives good results, but it
smooths only the normal vector of the discrete surface and not the geometry of
the surface net. Other methods use deformable models to extract a continuous
surface from the original discrete surface [8, 11].

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 404–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Statistical Approach for Geometric Smoothing 405

An alternative consist in smoothing the object surface by moving the points
of the discrete surface. In [2], Braquelaire and Pousset define Euclidean nets as a
3D extension of the model of Euclidean paths [15, 3]. In this model, each surface
point may be moved inside the unit cube containing it. The smoothing is thus
reversible and the original surface can be retrieved from the smoothed one. In
the proposed method the points of the discrete surface were moved according
to a projection onto some discrete tangent planes. This plane was estimated by
searching for local geometric configurations of voxels called tricube [10, 4].

The main drawback of this method is the small neighborhood size which is
used to determine the discrete tangent plane. Therefore, the precision of the
final result is limited to a local analysis of the discrete surface. In recent works
[5], Coeurjolly suggests to use a statistical computation of the discrete tangent
plane to obtain the normal vectors of the discrete surface.

In this work we develop this approach and propose a statistical method to
recognize accurate tangent plane with a varying neighborhood size. We then use
this method to enhance the construction of a smoothed Euclidean net associated
with a discrete surface. This method permits to obtain both smooth normal
vectors and smooth surface mesh.

In the following section, we introduce the statistical estimation of the discrete
tangent plane. In Section 3, we show how to apply a geometric constraint to
control the recognition of the discrete tangent plane. Section 4 addresses the
problem of transforming the surface from discrete space to a new surface net in
continuous space. Afterward, in Section 5 experimental results on both synthetic
and real data are presented. Finally, we conclude by future work and implication
of this work.

2 Statistical Estimation of the Tangent Plane’s
Orientation

Let us recall some basic definitions in use in this paper. A voxel is a unit cube
which the center is an integer point and a surfel is the intersection of two 6-
adjacent voxels. The surface of a 6-connected object is the set of surfels adjacent
to both a voxel inside and a voxel outside the object. In the same way, a linel is
defined as the intersection between two 4-adjacent pixels one of wich belongs to
the discrete line. From these definitions surfels and linels are be differentiated
according their configurations. Fig. 1 illustrates different types of surfels and
linels.

In discrete space, a discrete tangent plane can be defined as the largest dis-
crete plane which can be reconstructed from an initial voxel. The strategy to
estimate the discrete tangent plane consists in considering a random draw of
surfel. Let us first consider some probalilyties on a discrete line.

Proposition 1. Consider the random draw of linels of type 1 and 2 on a discrete
naive line of the first quadrant (i.e. a > 0, b > 0). The probability to obtain a
linel of type 1 is b

a+b , the probability to obtain a linel of type 2 is a
a+b .

406 B. Kerautret and A. Braquelaire

0 0 1 0 00 10

Lignel type 2

Lignel type 1
Surfel Type 1

Surfel Type 3

Surfel Type 2
Y

M

N

Z

X

(a) (b)

Fig. 1. Illustration of the different type of linel (a) and of voxels (b)

Proof. Let us consider the discrete naive line represented with the Freeman
code. First, we suppose that the discrete line belongs to the first octant (i.e.
a ≤ b). Then the discrete line is defined by N codes associated to each pixel
with directions 0 and 1 (Fig.1-a). By construction, the probability to obtain the
code 1 is a

b , then the number of linels of type 1 (n1) is N a
b . With the same

arguments, we can deduce that the number of linels of type 2 (n2) is N . Thus
the two probabilities P1 and P2 can be written as follows:

P1 =
n1

n1 + n2
=

N

N(a
b + 1)

=
b

a + b
(1)

P2 =
n2

n1 + n2
=

N(a
b)

N(a
b + 1)

=
a

a + b
(2)

The other case for which the discrete line belongs to the second octant (i.e.
b > a) can be inferred by using symmetries.

Now we consider the same process on a discrete plane:

Proposition 2. Consider the process which consists of a random draw of surfels
of type 1, 2 and 3 on a discrete naive plane of the first 8th of space (i.e. a ≥ 0,
b ≥ 0, c ≥ 0). The probability to obtain a surfel of type 1 is b

a+b+c , the probability
to obtain a surfel of type 2 is a

a+b+c and the probability to obtain a surfel of type
3 is c

a+b+c .

Proof. The proof is based on the decomposition of the plane into discrete lines.
More precisely, we first suppose that c = max(a, b, c). We can consider this
discrete plane as composition of N discrete lines Dx(a, c, μ) in the direction of
the x axis and M discrete lines Dy(b, c, μ) in the direction of the y axis (Fig. 1-b).
The number of surfels of type 3 (n3) is NM . Each discrete line Dx generates
surfels of type 2 with probability a

c . Then the number of surfels of type 2 (n2) is
NM a

c . In the same way, we deduce the number of surfels of type 1 (n1) equals
to NM b

c . Now, we can obtain the following probabilities:

A Statistical Approach for Geometric Smoothing 407

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

F
re

qu
en

cy

Numbers of surfels raws

Surfel type 1

Surfel type 2

Surfel type 3

a/(a+b+c)
b/(a+b+c)
c/(a+b+c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

F
re

qu
en

cy

Numbers of surfels raws

Surfel type 1

Surfel type 2

Surfel type 3

a/(a+b+c)
b/(a+b+c)
c/(a+b+c)

(a) (b)

Fig. 2. Illustration of the convergence of a discrete plane P (7, 17, 57, 0). The graphic
(a) was obtained with a random raw of surfels and (b) was obtained with a cubic raw

P1 = n1
n1+n2+n3

= NM(b
c)

NM(a+b+c
c)

= b
a+b+c

P2 = n2
n1+n2+n3

= NM(a
c)

NM(a+b+c
c)

= a
a+b+c

P3 = n3
n1+n2+n3

= NM
NM(a+b+c

c)
= c

a+b+c

(3)

The other case for which b = max(a, b, c) and a = max(a, b, c) can be inferred
by using symmetries.

From these probability laws, the coefficients a, b, c can be recovered by solving
the system of equation Eq. 3. By considering the number ni of surfel of type i,
we obtain: c = kn2, b = kn3, a = kn1; with k = 1

gcd(n1,n2,n3)
.

In order to estimate the parameters of the tangent plane at a point of the
discrete surface we have now to traverse the neighborhood of this point in order
to analyze the frequency of apparition of the different type surfels. There exists
several strategies to select the surfels in the neighborhood of the considered point.
We can notice that with a random selection the convergence of the frequencies
is quite slow. Fig. 2 shows the evolution of the frequencies with a such draw on
a discrete plane of characteristics P(7, 17, 57, 0). The frequency convergence can
be detected after around 450 surfel draws.

A better solution consists in selecting surfels on the boundary of a cubic
growing neighborhood from the initial point P0. More precisely, the boundary
of the cubic neighborhood of size s is defined by:

Ns = {P (x0 + i, y0 + j, z0 + k) | P ∈ S,

P is 6-connected to P0, i, j, k ∈ {−s, s}} (4)

Fig. 2-b shows the frequency obtained after this selection of surfel. The fre-
quency convergence can be detected with around 100 surfels. This selection of
surfels implies a faster convergence of the estimation than the previous method.
Other methods of selection were experimented, for example the surfels can be

408 B. Kerautret and A. Braquelaire

selected according to their Euclidean distances from the initial point. Therefore,
since this method does not improve the convergence, we have chosen to use the
cubic draw of surfels.

Now, we have to define a convergence criterion to detect when the statistical
draw follows a probability law. We denote by f

(n)
i the apparition frequency of a

surfel of type i with a neighborhood size equal to n. The criterion of recognition
Kn of the discrete tangent plane can be deduced from this apparition frequencies:

Kn =
6∑

i=1

∣∣∣f (n)
i − f

(n−1)
i

∣∣∣ with: f
(n)
i =

s
(n)
i

S
(n)
i

,

where s(n)
i represents thenumber of surfels of type i on theboundary of the cubic

neighborhood of size n, and S
(n)
i is the total number of surfels contained in Nn.

From this criterion, we can define the index nk, for which the criterion K
reaches a minimum value. Then the parameters of the discrete plane are deduced
from the global frequencies F

(n)
i obtained over the whole neighborhood of size

nk. More precisely, we have:

F
(n)
i =

∑n
j=0 s

(j)
i

S
(n)
Tot

,

where S
(n)
Tot represents the total number of all the surfels contained in cubic

neighborhood of size n.

3 Position of the Tangent Plane

When estimating the discrete tangent plane, one needs to determine the pa-
rameter μ associated to the position in space of the discrete tangent plane. This
parameter plays an important role to determine the position of the new points in
the Euclidean space. All the discrete points Pi which belong to the neighborhood
of size n, need to verify the discrete plane equation:

μ ≤ axi + byi + czi < μ + ω

From each point, an interval of possible values of μi can be deduced:

μi ∈ [σi − ω, σi[

with σi = axi + byi + czi

Since all the discrete points Pi do not necessary belong to the discrete plane,
we compute the value of μ for which a maximum of voxels verify the discrete
plane equation. If the resulting possible solutions of μ are defined by an interval
I = [μmin, μmax], then the solution for μ is determined as the average value of
the two values μmin and μmax.

Now since all the characteristics of the discrete tangent plane are evaluated,
it is possible to compute the number of voxels which verify the discrete tangent

A Statistical Approach for Geometric Smoothing 409

plane equation. The percentage of pixels belonging to the discrete plane is used in
association with the previous criterion to limit the neighborhood size extension
when ambiguous situation appears. Let us consider for instance a point located
at the junction of two planes P1 and P2 and suppose that each plane has only one
kind of surfel. In this case the selected surfels are of two types, one from the plane
P1 and the other one from P2. The statistical analysis does not take into account
the local arrangement of surfels and will thus recognize the plane orthogonal to
the bisector of P1 and P2. Such cases may be detected by checking the amount
of points which does not belong to the recognized plane. When a tangent plane
cannot be recognized the related point may be smoothed by interpolation.

4 Surface Reconstruction

From the binary data, a surface mesh is as-

P

p

Axis of the discrete grid

(a) (b)

Fig. 3

sociated to the discrete surface by using the
Türmer’s algorithm [14]. The resulting sur-
face mesh is obtained by linking together
some 6-adjacent centers of voxel belonging
to the discrete surface. The triangulation is
determined from different topological con-
figurations of voxel. Fig. 3-a illustrates a
possible configuration of voxels with the as-
sociated triangulation (the voxels belonging to the discrete surface are drawn in
light gray). An example of the resulting surface mesh is shown in Fig. 4-a-d. The
direct rendering of the surface mesh does not looks as a continuous surface.

To obtain a smooth surface net, all the center of voxels P are projected on
the real tangent plane associated to the discrete tangent plane. For this purpose,
we consider the upper and lower real tangent planes defined by:

ax + by + cz = μ
ax + by + cz = μ + ω − 1 (5)

From this two planes, we can define the real projection plane as follows:

ax + by + cz = μ +
ω − 1

2
(6)

There are several ways to project the center of a voxel to the associated real
tangent plane. A first approach is to project the discrete point according to the
three axis. A better solution consists in projecting the center of voxel according
the direction of the normal vector. The advantage of such a projection is the
possibility to recover the normal orientation from the projected point.

Therefore, if the discrete point P is the origin of the coordinate system, the
new point resulting from the projection p is defined by : p = α(a, b, c). The value
of α is deduced from the tangent plane equation, we obtain:

α =
μ + ω−1

2

a2 + b2 + c2

410 B. Kerautret and A. Braquelaire

This projection of discrete point P is illustrated in Fig. 3-b. The new eu-
clidean point p is projected to the tangent plane in the direction of the nor-
mal vector. It is possible to show that the projection of the discrete point
P (Xp, Yp, Zp) onto the tangent plane satisfies the Euclidean net condition:

|xp − Xp| <
1
2

, |yp − Yp| <
1
2

and |zp − Zp| <
1
2

Each point of the Euclidean net is contained in the unit voxel centered at
the associated discrete point. Thus the coordinates of the discrete point can be
recovered by rounding the coordinates of the projected point. As a consequence,
the transformation of the surface is reversible and the surface mesh is smoothed
without any loss in information.

Moreover, from the projected points we can recover the tangent plane orien-
tation by simply computing a = σ(xp −Xp), b = σ(yp −Yp) and c = σ(zp −Zp),
with σ ∈ {−1, 1} determined according to the surface orientation of the trian-
gulated surface. Note that a special case appears when the projected point p is
merged with the discrete point P . To avoid this situation, a solution consists in
moving the projected point by an infinite small displacement in order to recover
the tangent plane orientation.

Remark that the Euclidean net associated by this method with a discrete
surface encode simultaneously the points of the original discrete surface, the
points of the smoothed surface and the tangents estimated at each point.

5 Experiments

Firstly, we have experimented this method on a synthetic vase. The initial object
was obtained after the rasterization of the associated function. Fig. 4-a shows the
result of the initial polygonal surface obtained directly after the triangulation
of the discrete surface. The surface obtained after the projection of the discrete
points to the tangent plane is shown in Fig. 4-b. This surface is rendered with flat
shading using only the information of the surface mesh. In Fig. 4-c the surface is
rendered using the normal vectors recovered from the projection of the Euclidean
points and using Gouraud shading. The final surface looks much more smooth
than the initial.

To analyze the smoothing effect on the discontinuity of the surface, we have
experimented the method on the surface represented in Fig. 4-d. The object was
obtained by sampling a sphere of radius 30 holed by a sphere of radius 15. As
shown in Fig. 4-e, the discontinuity between the two spheres is well conserved,
while the small sphere is still smooth. Fig. 4-f shows the neighborhood size which
is used for the statistical recognition of the discrete tangent plane. The color
range from dark blue to white is associated to a size of neighborhood from 1 to
4. This repartition of the neighborhood size shows how the recognition process
may detect surface discontinuity.

Then we have analyzed your method on 3D data scan from MRI images.
Fig. 5-a shows the initial surface mesh of the discrete data obtained after a

A Statistical Approach for Geometric Smoothing 411

(a) (b) (c)

(d) (e) (f)

Fig. 4. Results obtained from synthetic objects. (a) Triangulated surface, (b) smooth
surface rendered with flat shading, (c) idem with Gouraud shading, (d) triangulated
surface of second object, (e) smoothed surface rendered with Gouraud shading, and (f)
neighborhood size used in the statistical recognition

(a) (b) (c)

Fig. 5. Results obtained from the MRI scan of a child head. The binary data was
obtained by a simple threshold (on an array of size 58 × 58 × 58). Image (a) is the
result obtained after the triangulation of the discrete surface. (b) is the resulting surface
rendered with flat shading and (c) with Gouraud shading

binary segmentation. The surface was contained in an array of size 58× 58× 58.
After the application of our method the resulting surface looks very smooth
compared to the initial surface and the general shape is well conserved (Fig. 5-b
and c). In the same way, Fig. 6 presents results on a more complex topology as
the skull. The surface was extracted from a binary array of size 49 × 49 × 49.

Tab. 1 presents quantitative experiments on different discrete spheres. The
area of the sphere computed from the Euclidean net was compared to the theo-
retical value. Another geometrical property was analyzed by the comparison of
the distances of each euclidean point to the radius of each sphere.

412 B. Kerautret and A. Braquelaire

(a) (b)

Fig. 6. Results obtained from the MRI scan of a skull. The binary data was obtained
by a simple threshold (on an array of size 49×49×49). Image (a) is the result obtained
after the triangulation of the discrete surface. (b) is the resulting surface rendered with
flat shading and (c) with Gouraud shading

Table 1. Results of geometric properties extraction on discrete sphere with different
radius

Radius area/expected area mean error distance
10 1.020 0.097
20 1.008 0.085
30 1.009 0.088
40 1.007 0.087
70 1.005 0.095

6 Conclusion and Future Work

We have introduced a new geometric and statistical method to smooth discrete
surfaces. The results of experimentation on both synthetic and real objects show
smooth results both on the visual and geometrical points of view. The result-
ing surface representation can be used for discrete surface rendering and for
geometrical properties extraction.

A Statistical Approach for Geometric Smoothing 413

We are currently working on other methods to define a non symmetric surfel
draw. This strategy could be relevant in order to adapt the recognition of the
tangent plane when discontinuities on the surface are detected. Moreover, it will
be interesting to adapt this method to the inter-voxel boundaries representa-
tion. Indeed this representation gives a simple and consistent representation of
the discrete surface. Finally, further investigations will concern the use of this
smoothing method to improve the reconstruction of the discrete Shape From
Shading technique introduced in [1].

References

1. A. Braquelaire and B. Kerautret. Reconstruction of discrete surfaces from shading
images by propagation of geometric features. In Discrete Geometry for Computer
Imagery, volume 2886 of LNCS, pages 257–266. Springer-Verlag, 2003.

2. A. Braquelaire and A. Pousset. Automatic and reversible geometric smoothing of
the boundary of a discrete 3d object. In Discrete Geometry for Computer Imagery,
volume 1953, pages 198–209. Springer-Verlag, 2000.

3. J.P. Braquelaire and A. Vialard. Euclidean paths : a new representation of bound-
ary of discrete regions. Graphical Models and Images Processing, 61:16–43, 1999.

4. J.M. Chassery and J. Vittone. Coexistence of tricubes in digital naive plane.
Lecture Notes in Computer Science, 1347:99–110, December 1997.

5. D. Coeurjolly. Algorithmique et géométrie discrète pour la caractérisation des
courbes et des surfaces. PhD thesis, Laboratoire ERIC, 2001.

6. H. Gouraud. Continous shading of curved surfaces. IEEE Transaction on Com-
puters, 20(6):623–629, 1971.

7. G.T. Herman and H.K Liu. Three-dimensional display of human organs from
computed tomograms. Computer Graphics and Image Processing, 9(1):1–21, 1979.

8. J.-O. Lachaud and A. Montanvert. Deformable meshes with automated topology
changes for coarses-to-fine 3d surface extraction. Medical Image Analysis, 3(2):187–
207, 1999.

9. W.E. Lorenson and H.E. Cline. Marching cubes: A height resolution 3d surface
reconstruction algorithm. volume 21, pages 11–118, 1987.

10. J.M. Schramm. Coplanar tricubes. Lecture Notes in Computer Science, 1347:87–
98, December 1997.

11. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models:
Recovering 3d shape and nonrigid motion. Artificial Intelligence, 36:91–123, 1988.

12. G. Thürmer. Smoothing normal on discrete surfaces while preserving slope dis-
continuities. Computer Graphics Forum, 20(2):103–114, 2001.

13. G. Thürmer and C. A. Wütrich. Varying neighbourhood parameters for compu-
tation of normals on surfaces in discrete space. In IEEE Computer Society Press,
editor, Computer Graphics International, pages 616–625, 1998.

14. G. Thürmer and C.A. Wütrich. Polygon mesh generation for discrete surfaces in 3d
space. In Eighth Eurographics Workshop on Visualisation in Scientific Computing,
pages 117–126, 1997.

15. A. Vialard. Chemins euclidiens : Un modèle de représentation des contours dis-
crets. Phd thesis, Université Bordeaux 1, 1996.

Arbitrary 3D Resolution Discrete Ray Tracing
of Implicit Surfaces

Nilo Stolte

École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montréal H30 1K3, Canada
nilo.stolte@online.fr

Abstract. A new approach to ray tracing implicit surfaces based on recursive
space subdivision is presented in this paper. Interval arithmetic, already used to
calculate intersections in ray tracing and ray casting (numerically or subdividing
1D or 2D spaces), is now used here to implement a ray tracing based on reliable
rays traversals into a potentially infinite octree-like subdivided space, eliminating
explicit intersections. Novel, robust and efficient algorithms for ray voxelization
and BSP octant ordering are used to recursively traverse rays through the space.
Implicit surfaces are robustly voxelized and hierarchically stored into an octree to
a certain given level. During rendering, the subdivision based voxelization of sur-
faces and rays continues further down until a resolution near the discrete domain of
the floating point numbers is acquired. To guarantee robustness of the ray voxeliza-
tion, interval arithmetic with calculations performed under appropriate rounding
modes in Pentium-4 x87 and SSE2 FPUs respectively is applied. The major ad-
vantage is that the traversal algorithm is guaranteed to find reliable intersections
between the rays and the scene without any explicit intersection calculation, solv-
ing a known precision problem of the ray traversal in a previous approach, used
here for comparison. The precision of the traversal can be arbitrarily increased
within the limitation of the floating point representation.

1 Introduction

Ray tracing has been relying intensively on rays-objects intersections [1] which have
been persistently imputed as the cause of its low efficiency.Acceleration techniques have
been proposed to reduce in one way or another the number of intersection calculations.
Some are based on space subdivision in which explicit ray-object intersections are by-
passed by traversing rays through the subdivided space. Nonetheless, the ray traversal
itself might rely on intersections between rays and bounding volumes [2, 3] or between
rays and discrete subspaces where the scene was previously voxelized [4, 5, 6, 7]. Oc-
trees [8, 4, 6, 5, 7, 9] have been proved to have great advantages for space decomposition
in these techniques, since empty regions can be efficiently skipped. However, their ad-
vantages have been considerably hindered by the fact that the intersection calculations
between rays and the boundaries of the regions traversed are not only inefficient but also
unreliable [6]. Sometimes, these intersection calculations were implicitly or exclusively
accomplished by incremental algorithms [8, 10, 7, 9]. Even though incremental algo-
rithms are more efficient than direct intersection calculations they lack precision and are
not reliable. As the discrete traversal advances, the mismatch between the continuous

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 414–426, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces 415

ray and the discrete counterpart considerably increases due to the lack of precision, thus
parts of the scene would have the tendency to disappear at the end of the traversal since
what the discrete ray intersects may be different from what the floating point ray inter-
sects. Evidently, if the discrete traversal is done in low resolution spaces, as it is the case
in most acceleration algorithms, the problem is less noticeable. However, the problem
is particularly worse when considerably huge discrete spaces are traversed.

Prior to the algorithm presented in section 2, robust ray traversals in discrete spaces
have not yet been proposed to solve the problem, although there have been several
robust techniques presented such as Lipshitz conditions or interval arithmetic. Interval
arithmetic was introduced by Moore [11, 12] and by Duff and Snyder [13, 14] into
computer graphics. Since the problem of rounding errors can be very serious as seen
in [15], the search for reliable algorithms for rendering is of quite significant importance.
Although interval arithmetic has been used in several ray casting approaches [16, 14],
the algorithm in section 2 is the first complete solution of an interval arithmetic based
ray tracing with 3D space subdivision using discrete ray traversal. Kalra and Barr’s
ray tracing in [17] adopted a guaranteed ray intersection technique, that could not be
considered a reliable solution for ray traversal. Their ray tracing [17] used Lipshitz
conditions to voxelize implicit surfaces. However, explicit intersections between rays
and octants as well as between rays and objects were still calculated. Duff’s interval
arithmetic ray casting [14] is robust, but it works in the image space and applies the
perspective into the surface equations, thus being not compatible with space subdivision
techniques.

In this article, a new approach is shown in which the traversal is done by voxelizing
implicitly represented rays using the same technique to voxelize implicit surfaces. Sur-
faces and rays are simultaneously voxelized to avoid all explicit intersection calculations,
between rays and objects as well as between rays and octants. The correlation between
the discrete ray and the continuous ray is solved here because they are exactly the same.
In this sense this approach resembles a discrete ray tracing [10, 9]. The basic differences
in our approach are: (1) the voxelization of surfaces and rays are robust due to the use of
interval arithmetic; (2) spatial resolution is much higher, allowing reaching the discrete
domain of floating point numbers as proposed in [18]; (3) the scene is voxelized to a
lower resolution into the octree as in [9] but during rendering the voxelization of surfaces
and rays continues on the fly until a given precision is reached. Even though voxelization
plays a crucial role, methods that do not ensure robustness [19, 20, 21] cannot be used in
our context. By chance, implicit surfaces can be voxelized robustly [22, 14, 13, 23, 24]
and a huge variety of forms and shapes can be defined implicitly.

Robust voxelization of implicit surfaces is generally implemented using spatial re-
cursive subdivision [22, 14, 23, 24]. The methods are all conservative, though. Thus,
spurious voxels might show up, depending on the surface, the voxelization method and
how it is implemented. Although Lipshitz conditions can also be used to voxelize im-
plicit surfaces [25], interval arithmetic is preferred in our approach because it is shown
to be more efficient and more reliable [23]. To avoid the spurious regions, the implicit
function describing the surface is evaluated at the eight vertices of the octants to verify
if there is a change in sign when the last level is reached. Since it is only done at the

416 N. Stolte

#define NL 30

bool intersectionFound = false;
Point intersectedPoint;
int signDir = (dz<0)�2+(dy<0)�1+(dx<0);

bool Traversal (octant[8], level) {
if (intersectionFound) return true;
if (level == NL) {

Object obj = (surface contained in octant);
if (!IsoValueTest(obj, octant)) {

if (!PartialDifferentialTest(obj, octant))
return false;}

intersectionFound = true;
intersectedPoint = mid;
return true;}

if (!(ray passes through octant)) return false;
int izyx = ((z0 > zm) � 2)+((y0 > ym) � 1)+(x0 > xm);
int iaux = izyx xor signDir;
for (i=0; i<8; i++) {

if (iaux and i) continue; /* Octant elimination */
int idx = izyx xor i; /* BSP ordering */
suboct = octant[idx];
if (!(r passes through suboct)) continue;
if (suboct contains a part of a surface)

if (Traversal (suboct, level+1)) break;}
return intersectionFound;}

Fig. 1. Octree ray traversal algorithm

last level of the subdivision, the robustness throughout the process is guaranteed, but not
in [17] because it is performed at each octant before testing the Lipschitz condition.

During the recursive subdivision at rendering time the order in which the octants are
to be traversed is important. Our innovative BSP ordering algorithm ensures robustness
in this process too. In this algorithm only the starting point of the ray and the middle
point of the octant are required. The middle point is always an integer-like number that
is produced by the addition of a power of two, half of the length of the octant plus the
coordinate of the octant. This is guaranteed to avoid carry propagation, thus ensuring
robustness as well as exactness. This calculation is always exact provided the half length
of the octant is not smaller than 1 Ulp (unit in the last place) [15].

2 New Octree Ray Traversal Algorithm

2.1 Notations and Definitions

Ray. The notation for the ray equation starting at (x0, y0, z0) and with (dx, dy, dz)
as its the direction vector is as follows:⎧⎨⎩

x = x0 + t·dx
y = y0 + t·dy
z = z0 + t·dz

(1)

Scene. The scene is contained in an axis-aligned cube defined as the bounding box of
all the surfaces. One of the cube’s vertices is located at the origin (0, 0, 0) and all the

Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces 417

other ones have zero or positive coordinates. All the objects (surfaces) are defined within
this cube, and previously voxelized using space subdivision.

Octant and Splitting Planes. The space subdivision starts splitting the scene into eight
equal sized cubes, and each of these cubes is called an octant. An octant can be viewed
as three intervals, each one along its respective coordinate axis:

[xc, Xc] [yc, Yc] [zc, Zc] (2)

where (xc, yc, zc), the vertex with lowest coordinates, is regarded as the coordinate of
the octant, and (Xc, Yc, Zc) is the vertex with highest coordinates. The subdivision of
an octant is performed along the three axis-aligned splitting planes passing through the
middle point of the octant, that is (xm, ym, zm) = (xc+l/2, yc+l/2, zc+l/2), where
l is the size of the octant. The splitting planes equations are then x = xm, y = ym and
z = zm.

The eight subdivided octants (sub-octants) are stored in memory along an order
determined by their relative locations in respect to the splitting planes, with indices from
0 to 7. Actually each index consists of three bits, each corresponding to an axis. Each
bit is set if the sub-octant lies on the positive side of the corresponding splitting plane,
otherwise it is zero.

2.2 Algorithm Overview

The appealing idea of using discrete space resolutions so high to be able to reproduce the
discrete domain of the floating point numbers to guarantee robustness [18] is for the first
time implemented in this article. Moreover, the techniques in [24] to robustly voxelize
different kinds of implicit surfaces are used as a basis in our approach to ray tracing. A
conventional ray tracer is used here, while the intersection calculation is replaced by our
new octree ray traversal algorithm.

During subdivision, each octant that might contain a part of a surface is further
subdivided and so forth. Once a certain level is reached the octant is considered a leaf
node or voxel and stored in an octree. During rendering time, the basic idea is to traverse
each ray through the octree to find the first voxel containing a part of an object in the
scene, which is in appearance similar to the work of Glassner [4] or Gargantini [6].
The fundamental difference between their approaches is that Glassner uses a linear
octree, while Gargantini uses a hierarchical pointer octree. The approach in this article is
different from their approaches in two aspects: (1) no explicit intersections between rays
and octants neither between rays and objects are ever calculated; (2) the spatial recursive
subdivision continues further down after the first voxel is found. This subdivision is done
in the same way as the recursive voxelization, however, it is done on the fly and nothing
needs to be stored, since rays and surfaces are voxelized concurrently. For each octant
the eight sub-octants are sorted in the order that they might be traversed by the ray, and
tested to verify if they are indeed traversed by the ray. This process is summarized in the
pseudo code of Fig. 1. The IsoValueTest and PartialDifferentialTest appearing in Fig. 1
are discussed in section 2.5.

In the implementations of Glassner’s [4] and Gargantini’s [6] approaches explicit in-
tersection calculation is performed when traversing the subdivided space, which cannot

418 N. Stolte

Fig. 2. Illustration of the BSP ordering technique

guarantee robustness. Our approach is significantly more reliable since the ray vox-
elization (see section 2.4) is robust and the BSP ordering scheme relies on calculations
not affected by rounding errors. The traversal continues to recursively descend in the
subdivided space whenever octants that satisfy the following three conditions are found:

1. The ray passes through the octant. This is tested using our new ray voxelization
algorithm (see section 2.4).

2. The octant contains a part of a surface in the scene. When the traversal is within the
octree, it is easily tested by verifying the data stored in the octree. When the traversal
goes beyond the octree resolution, the implicit function inclusion function [13] used
to voxelize the surface is reused to check this condition.

3. The octant is the nearest to (x0, y0, z0) satisfying conditions 1 and 2. This is ensured
using the BSP ordering technique (see section 2.3).

The traversal continues until an octant is finally found after descending NL levels in
the subdivided space, where NL is the preset maximum traversal level, otherwise it is
assumed that there is no intersection between the ray and the scene. The intersection
point is then considered to be (xm, ym, zm). The precision obtained is dictated by
the maximum distance between this point and the real intersection, that is, half of the
octant diagonal length, which is

√
3 ·2−NL−1. It can be seen that better precision can be

obtained by increasing NL. For the IEEE 754 double precision numbers, the maximum
value of NL is 53, which is the number of bits in the significand including the hidden 1,
a binary digit always set to 1 except in special cases, which is not explicitly represented.

2.3 Enhanced BSP Octant Ordering

The BSP ordering technique is shown in Fig. 1. It is based on the relative location of
the starting point of the ray in respect to the three splitting planes. This information is
stored into the variable izyx as illustrated in Fig. 1. The variable i stores the indexes of
the octants as they appear in the memory, but these indexes are not in the front to back
order as required in our ray traversal. As illustrated in Fig. 2, the memory voxel order
is preserved in certain cases; otherwise it is reversed. Moreover, if the ray does not pass
through a splitting plane, the four sub-octants at the opposite side of the splitting plane
in respect to the starting point of the ray will never be traversed and are ignored. The
efficiency of these two calculations comes from their extreme simplicity and reduced
number of instructions.

Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces 419

2.4 Novel Robust Ray Voxelization Algorithm

Ray Inclusion Function. Our method to test whether a ray passes through an octant is
based on the implicit form of the ray. After eliminating the t variable in (1) and applying
a common factor |dx|·|dy|·|dz|, the implicit representation of the ray is obtained:

cx·(x−x0) = cy·(y−y0) = cz·(z−z0) (3)

where
cx = sign(dx) · |dy| · |dz |
cy = sign(dy) · |dz | · |dx|
cz = sign(dz) · |dx| · |dy|

Actually, each one of the three parts of (3) is the multiplication of t in (1) by
|dx|·|dy|·|dz|. The sign(dx), sign(dy) and sign(dz) ensure that the values obtained
from (3) have the same sign as the real t in (1). Replacing the variables x, y and z in
equation (3) by the three intervals in (2) produces one interval in each of the three parts
of (3), as shown in (4).

[fx(xc), fx(Xc)] = [cx ·(xc −x0), cx ·(Xc −x0)]
[fy(yc), fy(Yc)] = [cy ·(yc −y0), cy ·(Yc −y0)]
[fz (zc), fz (Zc)] = [cz ·(zc −z0), cz ·(Zc −z0)]

(4)

As can be seen, the ray passes through the octant only if these three intervals overlap
and this condition is what is used to test if a ray passes through an octant.

Using Correct Rounding Modes. The approach still suffers from rounding errors
caused by the multiplications. The precision of the traversal is determined by the num-
ber of subdivision levels, each further subdivision corresponding to an additional bit
of precision. In experiments where subdivision levels are close to the limits of floating
point double precision (e.g. 50 levels), some octants are missed by rays that pass very
close to octants’ edges or vertices. In this case the two bounds of the octants in each axis
differ only in the last few bits of the significand. Consequently, after applying them to
(3) the resulting intervals are more prone to rounding errors. To guarantee robustness
of this calculation, interval arithmetic with appropriate rounding modes is applied. The
calculation in (4) is done with two rounding modes, towards ‘-∞’and ‘+∞’, to the lower
and upper bounds respectively. Consequently when the three intervals obtained with cor-
rect rounding modes do not overlap, it is assured that the ray does not pass through the
octant. Moreover, we consider that there is no overlap when a lower bound of an interval
is equal to the upper bound of another, since the ray in this case passes through neither
one of them. To avoid penalties in performance normally involved in frequent change of
rounding modes, each bound is calculated in a different floating point unit (FPU) preset
with the required rounding mode. The Pentium-4 allows executing 2 double precision
operations in SSE2 FPU and one double precision operation in the normal x87 FPU with
independent rounding modes.

Optimizations. The actual implementation of this algorithm differs from what is de-
scribed in Fig. 1 due to optimization reasons. The number of operations shown in section

420 N. Stolte

double tx[4] = { xc, xm, xm, Xc };

/* calculate array tx*/
int itx = (signDir and 1)�1;
/* but for the other two axes it would be: */
/* int itx = (signDir and 2); → y axis */
/* int itx = (signDir and 4)�1; → z axis */
tx[itx] = fx−(tx[itx]);
tx[itx+1] = fx−(tx[itx+1]);
tx[itx xor 2] = fx+(tx[itx xor 2]);
tx[(itx xor 2)+1] = fx+(tx[(itx xor 2)+1]);

/* retrieving corresponding interval from tx */
/* idx is the index of the sub-octant as defined in Fig. 1 */
int ix = idx and 1;
/* but for the other two axes it would be: */
/* int ix = (idx and 2)�1; → y axis */
/* int ix = (idx and 4)�2; → z axis */
double lbx = tx[ix+itx];
double ubx = tx[ix+(itx xor 2)];

Fig. 3. Storing and retrieving the interval bounds with correct rounding modes without testing to
avoid stalling the processor pipeline

2.6 takes these optimizations into account. In Fig. 1, the test to verify if a ray passes
through an octant is carried out once for the octant itself and once for each of its sub-
octants, thus giving rise to 9 tests involving the evaluation of 27 intervals. Since they
share bounds with each other, only 3 intervals along each axis are really considered for
testing all the 9 octants, so only 9 of the 27 intervals are indeed calculated. To avoid
these repetitions all the eight sub-octants and their parent octant are tested together. What
remains to be elucidated is the selection of the correct rounding mode for each bound of
an interval. For the x coordinate, the following three intervals, [xc, Xc], [xc, xm] and
[xm, Xc] will be applied to the implicit ray equation (3), and three resulting intervals
will be obtained. However, the proper rounding modes to guarantee numerical robust-
ness depend on the direction of the ray along the x axis (dx). In the case that dx>0, the
resulting intervals are

[fx−(xc), fx+(Xc)], [fx−(xc), fx+(xm)], [fx−(xm), fx+(Xc)]

where fx−() and fx+() represent the calculation of fx() in (4) using rounding modes
towards ‘-∞’ and ‘+∞’ respectively. When dx < 0, the resulting intervals will be

[fx−(Xc), fx+(xc)], [fx−(Xc), fx+(xm)], [fx−(xm), fx+(xc)]

Evidently xc and Xc are calculated only once under different rounding modes, and
xm is always calculated twice, each one under a different rounding mode respectively.
Therefore, an array of four elements tx[4] is used to represent the three resulting intervals.
When dx>0, tx[0] and tx[1] are calculated with rounding mode ‘towards -∞’, and tx[2]
and tx[3] are calculated with rounding mode ‘towards +∞’; or vice versa when dx<0.
The same logic is used along y and z axis. To avoid tests and branch instructions that may
stall the processor pipeline, the indices of the elements in the arrays to store the values
calculated under each rounding mode are automatically selected. A similar scheme is
used to retrieve the correct lower and upper bounds stored in tx array for each sub-octant.
The procedure is shown in Fig. 3.

Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces 421

2.5 Partial Differential Test

The robustness of interval arithmetic can guarantee that no parts of the surfaces were
omitted during voxelization/traversal. On the other hand, however, it cannot guarantee
that each leaf voxel really contains a part of a surface, thus resulting in overestimations
during the voxelization/traversal process. To evaluate and reduce these overestimations,
two algorithms as proposed in [18] are applied on the final octant and the surface con-
tained in it. The first one calculates the eight iso-values of the function corresponding
to the surface at the eight corners of the octant, and checks if there is a change in sign.
This algorithm may suffer from rounding errors as suggested in [18], since it directly
uses the surface equation. In some cases, these rounding errors will possibly be added
to the half of the octant diagonal length error described at the end of section 2.2. Even
though it is possible to solve the problem, the reliability at the leaf level is already quite
high; therefore, the use of this algorithm is acceptable.

bool PartialDifferentialTest (Surface, Octant) {
f(x,y,z) : implicit function corresponding to Surface;
DFX(X), DFY (Y), DFZ(Z) :

inclusion functions of ∂f
∂x , ∂f

∂y and ∂f
∂z ;

X , Y , Z : the three intervals corresponding to Octant;
DX , DY , DZ : three intervals;
DX = DFX(X); DY = DFY (Y); DZ = DFZ(Z);
return ((0 ∈ DX) ‖ (0 ∈ DY) ‖ (0 ∈ DZ))

}

Fig. 4. Partial differential test of an octant

If there is a change in sign, the octant is considered to be correct at the given precision,
otherwise the second algorithm will be applied, which examines the monotonicity of the
implicit function as shown in Fig. 4. If the partial differential test returns true, the function
is monotonic within the x, y, and z range of the octant, thus the function has no zeroes
within the octant, so the octant is ignored and the traversal continues. If the test returns
false, the traversal stops, despite that in very special cases, this octant may not contain
a part of a surface. This case does not occur in any surface ray traced in this paper;
however, it needs to be considered in future work.

2.6 Comparison with Gargantini’s Algorithm

Octree traversal algorithms, such as Gargantini’s [6], calculate intersections between
the ray and the octants it traverses. Therefore, the traversal algorithm in section 2.4 is
compared with Gargantini’s. The rest of the program is exactly the same.

Gargantini’s algorithm exploits the fact that a ray can pass through at most four
sub-octants in an octant. Assuming that the entry and exit points of a ray into an octant
are known, intersections between the ray and all three subdivision mid-planes are then
calculated using (1). Only the m (m≤ 3) intersected points that are within the octant are
retained and sorted in ascending order according to their corresponding t values, resulting
in m+1 ray segments. The lower and upper bounds of each segment correspond to the

422 N. Stolte

entry and exit points of the ray into one sub-octant, thus the sub-octants traversed by the
ray are obtained in the correct order. The technique above was described in [6]. Due to
differences between the octants’ structures, the implementation here has some variations
in respect to [6]. Here, an octant only contains an array of pointers to its sub-octants.After
the index of a sub-octant is known, its coordinates and then its middle point need to be
calculated. In [6] only the indices of the sub-octants are needed, since their coordinates
are not used, and the octant structure already contains the middle point coordinates.
Because of the variations in design, the number of operations of Gargantini’s algorithm
contains more floating point additions and bit operations than what was claimed in [6].
The extra data cannot be stored in our case since our traversal is also done on the fly as
well as in the octree, while in [6] it is limited to the octree.

The advantage of the traversal algorithm in [6] is that it eliminates all the sub-
octants that are not traversed by the ray. Comparatively, the BSP ordering and auxiliary
techniques in our algorithm can only partially eliminate them, whereas the remaining
ones are still tested by the ray voxelization algorithm in section 2.4. However, as can be
seen from the results in section 3, the traversal algorithm in this article is a bit faster than
Gargantini’s, and is just slightly slower after performing the calculations using robust
interval arithmetic with different rounding modes. This is due to the high efficiency of
our BSP ordering and ray voxelization techniques.

If the precision/resolution is not too high (e.g. 30 levels), the traversals in both
Gargantini’s and our approach are exactly the same for the scenes tested. However,
when subdivision levels become close to the limits of the floating point precision the
two traversals start to mismatch. To verify which traversal is correct, a 128 bits precision
binary floating point arithmetic package was used. A verification program using this
package calculates the intersections between a ray and each sub-octant of a traversed
octant, giving the sub-octants indices in the order they are traversed. In all the scenes
tested our approach applying interval arithmetic with correct rounding modes (with
SSE2) always exhibited traversals identical to the ones obtained by the verification
program. Gargantini pointed out in [6] the two cases when the errors may occur, and
described a method to avoid the choice of incorrect octant under certain conditions
restricted to ray casting. However, the method is not a complete solution for all cases, and
can only eliminate a part of the errors. Comparatively, after applying interval arithmetic
with correct rounding modes, the algorithm described in section 2.4 can guarantee that
an octant will never be missed without much effect in the performance, thus solving the
problem in Gargantini’s algorithm.

3 Results

Table 1 shows the times for generating 512×512 images. Six kinds of surfaces are ray
traced using a PC with a Pentium-4 2.4GHz processor and 512Mbytes of main mem-
ory. Their equations can be seen in Table 1. For each kind of surface, images were
generated for both ray casting and ray tracing, using Gargantini’s algorithm, our algo-
rithm with and without proper rounding modes using SSE2 instructions respectively, see
Fig. 5.

Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces 423

Fig. 5. Ray tracing results with 5 level reflections

424 N. Stolte

Table 1. Ray tracing times (sec) for 512×512 images, 30 bits precision, 2 light sources and 5
levels of reflections (except for ray casting)

Primitive Equations Gar. Ours with SSE2

spheres 21.672 20.687 27.062
ray casting 15.516 15.235 19.860
quartdef 37.609 35.140 45.281
ray casting (x2 −1)2 +(y2 −1)2 +(z2 −1)2 −1 = 0 26.109 24.719 31.891
tanglecube 46.437 43.015 56.078
ray casting x4 −5x2 +y4 −5y2 +z4 −5z2 +11.8 = 0 30.719 28.813 37.531
holesrot 43.719 41.313 53.500
ray casting x3 +y3 +z3 −x−y −z = 0 30.469 29.313 37.937
asterisk(3,4) 204.327 193.233 209.608
ray casting sin(3θ)sin(4φ)−R = 0 113.875 109.546 118.750
asterisk(9,18) 435.638 410.841 445.982
ray casting sin(9θ)sin(18φ)−R = 0 135.390 129.312 140.562

The surfaces are voxelized at octree level 9 (5123 resolution), with NL=30. Only
images generated by our algorithm with SSE2 are shown since the images have no visible
differences in comparison to those generated by Gargantini’s.

It can be seen from Table 1 that our algorithms exhibit similar performance as Gar-
gantini’s. The one using interval arithmetic under proper rounding modes (with SSE2
instructions) is slightly slower, whereas the one without rounding (Ours) is several sec-
onds faster (see discussion in section 2.6). Gargantini’s algorithm was compared with
Samet’s in [6], and the results showed that the time in Gargantini’s approach is nearly
half of the time of Samet’s. Thus our approach is also fairly twice faster than Samet’s.

Analyzing the performance based on the number of rays per second (rays/sec), one
concludes that the surfaces with tight inclusion functions exhibit roughly the same per-
formance, thus suggesting the algorithm is insensitive to the surfaces’ complexity. The
best performance was with spheres, since they have quite simple equations and also the
tightest inclusion functions. Naively applying interval arithmetic in the tanglecube and
the holesrot did not originally provide tight inclusion functions. Cleverly decomposing
their expressions led to quite tight inclusion functions significantly enhancing the per-
formance. With the optimizations (shown in the times in the Table 1), the performance
of the holesrot almost doubles, whereas the tanglecube is almost 4 times faster.

4 Conclusion

A new algorithm is here shown to ray trace implicit surfaces without explicit intersection.
The intersection estimation converges in O(log8N), where N is the number of voxels
of the discrete space (23NL). It works by voxelizing rays and objects by recursively
subdividing the space and using interval arithmetic to discard regions not crossed by a
ray or a surface. A novel BSP octant ordering technique is used to efficiently traverse the
rays; it is robust since the values involved are exact. Both the ray and object voxelizations
are also robust, thus guaranteeing the reliability. A partial differential test algorithm is

Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces 425

sometimes applied to eliminate overestimations of interval arithmetic. The results show
that the algorithm is insensitive to the surfaces’ complexity but quite sensitive to the
inclusion functions tightness, since different surfaces with similar inclusion function
tightness exhibit similar rays/sec performance.

References

1. Whitted, T.: An Improved Ilumination Model for Shaded Display. Communications of the
ACM 23 (1980) 343–349

2. Rubin, S.M., Whitted, T.: A 3-Dimensional Representation for Fast Rendering Complex
Scenes. Computer Graphics 14 (1980) 110–116

3. Kay, T., Kajiya, J.: Ray Tracing Complex Scenes. Computer Graphics 20 (1986) 269–278
4. Glassner, A.S.: Space Subdivision for Fast Ray Tracing. IEEE - CGA 10 (1984) 15–22
5. Jevans, D., Wyvill, B.: Adaptative Voxel Subdivision for Ray Tracing. In: Proceedings of

Graphics Interface ’89, Toronto, Ontario, Canadian Information Processing Society (1989)
164–172

6. Gargantini, I.: Ray tracing an Octree: Numerical Evaluation of the First Intersection. Com-
puter Graphics forum 12 (1993) 199–210

7. Endl, R., Sommer, M.: Classification of Ray-Generators in Uniform Subdivisions and Octrees
for Ray Tracing. Computer Graphics forum 13 (1994) 3–19

8. Fujimoto, A., Tanaka, T., Iwata, K.: ARTS: Accelerated Ray Tracing System. IEEE - CGA 6
(1986) 16–26

9. Stolte, N., Caubet, R.: Discrete Ray-Tracing of Huge Voxel Spaces. Computer Graphics
Forum 14 (1995) 383–394

10. Yagel, R., Cohen, D., Kaufman, A.: Discrete Ray Tracing. IEEE - CGA 12 (1992) 19–28
11. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966)
12. Moore, R.E.: Methods andApplication of IntervalAnalysis. Society for Industrial andApplied

Mathematics (SIAM), Philadelphia (1979)
13. Snyder, J.M.: Interval Analysis For Computer Graphics. Computer Graphics 26 (1992)

121–130
14. Duff, T.: Interval Arithmetic and Recursive Subdivision for Implicit Functions and Construc-

tive Solid Geometry. Computer Graphics 26 (1992) 131–138
15. Goldberg, D.: What Every Computer Scientist Should KnowAbout Floating-PointArithmetic.

ACM Computing Surveys 23 (1991) 5–48
16. de Cusatis Junior, A., de Figueiredo, L.H., Gattass, M.: Interval Methods for Ray Casting

Implicit Surfaces with Affine Arithmetic. SIBGRAPHI (1999) 17–20
17. Kalra, D., Barr, A.: Guaranteed Ray Intersections with Implicit Surfaces. Computer Graphics

23 (1989) 297–306
18. Stolte, N.: High Resolution Discrete Spaces: A New Approach for Modeling and Realistic

Rendering (Espaces Discrets de Haute Résolutions: Une Nouvelle Approche pour la Mod-
elisation et le Rendu d’Images Réalistes). PhD thesis, Université Paul Sabatier - Toulouse -
France (1996)

19. Kaufman, A.: An Algorithm for 3D Scan-Conversion of Polygons. In: Eurographics’87,
Amsterdam, North Holand (1987) 197–208

20. Kaufman, A.: Efficient Algorithms for 3D Scan-Conversion of Parametric Curves, Surfaces,
and Volumes. Computer Graphics 21 (1987) 171–179

21. Greene, N.: Voxel Space Automata: Modeling with Stochastic Growth Processes in Voxel
Space. Computer Graphics 23 (1989) 175–184

22. Taubin, G.: Rasterizing Algebraic Curves and Surfaces. IEEE - CGA (1994) 14–23

426 N. Stolte

23. Stolte, N., Caubet, R.: Comparison between different Rasterization Methods for Implicit
Surfaces. In Rae Earnshaw, John A. Vince and How Jones, ed.: Visualization and Modeling.
Academic Press (1997) 191–201

24. Stolte, N., Kaufman, A.: Novel Techniques for Robust Voxelization and Visualization of
Implicit Surfaces. Graphical Models 63 (2001) 387–412

25. Bidasaria, H.B.: Defining and Rendering of Textured Objects through The Use of Exponential
Functions. Graphical Models and Image Processing 54 (1992) 97–102

Author Index

Alayrangues, Sylvie 195
Alpers, Andreas 92
Andrès, Éric 23

Balázs, Péter 104
Bernard, Thierry M. 1
Berthé, Valerie 276
Bertrand, Gilles 172
Borgefors, Gunilla 68
Braquelaire, Achille 404
Brimkov, Valentin E. 287
Brun, Luc 34
Brunetti, Sara 92
Buzer, Lilian 299

Castiglione, Giusi 115
Celasun, Işil 45
Chassery, Jean-Marc 347
Chatelier, Pierre Y. 392
Ciria, Jose C. 161
Coeurjolly, David 311
Couprie, Michel 172, 216
Crespo, Jose 206

Damiand, Guillaume 56
Dantchev, Stefan S. 287
de Miguel, Angel 161

Vieilleville, François 240
Debled-Rennesson, Isabelle 371
Domı́nguez, Eladio 161
Dupont, Florent 347

Feschet, Fabien 126, 371
Fiorio, Christophe 276
Francés, Angel R. 161
Frosini, Andrea 115
Fuchs, Laurent 195

Gérard, Yan 126
Geniet, Dominique 23
Gies, Valentin 1
Grasset-Simon, Carine 56
Guédon, JeanPierre 79, 153

Hamanaka, Masatoshi 323

Ikonen, Leena 228

Jamet, Damien 276

Köthe, Ullrich 383
Kenmochi, Yukiko 323, 335
Kerautret, Bertrand 404
Kingston, Andrew 136
Klette, Reinhard 183
Kuba, Attila 148

Lachaud, Jacques-Olivier 195, 240
Lakaemper, Rolf 11
Largeteau, Gaëlle 23
Latecki, Longin Jan 11
Li, Fajie 183
Lienhardt, Pascal 56
Lindblad, Joakim 252

Malgouyres, Rémy 392
Maojo, Victor 206
Melkisetoğlu, Rupen 45
Meyer, Fernand 34
Mokhtari, Myriam 34

Najman, Laurent 172
Nomura, Yusuke 335
Normand, Nicolas 79, 153

Peltier, Samuel 195
Prasad, Lakshman 263

Quintero, Antonio 161

Restivo, Antonio 115
Rinaldi, Simone 115
Rouyer-Degli, Jocelyne 371

Servières, Myriam 153
Sivignon, Isabelle 347
Stelldinger, Peer 383
Stolte, Nilo 414
Strand, Robin 68

de

428 Author Index

Sugimoto, Akihiro 323
Sun, Xinyu 11
Svalbe, Imants 136

Tekalp, A. Murat 45

Veelaert, Peter 359

Vialard, Anne 240
Vidal, Javier 206

Woeginger, Gerhard J. 148
Wolter, Diedrich 11

Zrour, Rita 216

	Frontmatter
	Applications
	Increasing Interconnection Network Connectivity for Reducing Operator Complexity in Asynchronous Vision Systems
	Geometric Robot Mapping
	Discrete Geometry Applied in Hard Real-Time Systems Validation

	Discrete Hierarchical Geometry
	Hierarchical Watersheds Within the Combinatorial Pyramid Framework
	Optimal Design of 2D/3D Hierarchical Content-Based Meshes for Multimedia
	Receptive Fields for Generalized Map Pyramids: The Notion of Generalized Orbit
	Resolution Pyramids on the FCC and BCC Grids

	Discrete Tomography
	The Mojette Transform: The First Ten Years
	On the Stability of Reconstructing Lattice Sets from X-rays Along Two Directions
	Reconstruction of Decomposable Discrete Sets from Four Projections
	A Tomographical Characterization of L-Convex Polyominoes
	Computerized Tomography with Digital Lines and Linear Programming
	A Discrete Modulo {\itshape N} Projective Radon Transform for {\itshape N} {\texttimes} {\itshape N} Images
	Two Remarks on Reconstructing Binary Vectors from Their Absorbed Projections
	How to Obtain a Lattice Basis from a Discrete Projected Space

	Discrete Topology
	Local Characterization of a Maximum Set of Digital (26,6)-Surfaces
	Algorithms for the Topological Watershed
	The Class of Simple Cube-Curves Whose MLPs Cannot Have Vertices at Grid Points
	Computation of Homology Groups and Generators
	Inclusion Relationships and Homotopy Issues in Shape Interpolation for Binary Images

	Object Properties
	Discrete Bisector Function and Euclidean Skeleton
	Pixel Queue Algorithm for Geodesic Distance Transforms
	Analysis and Comparative Evaluation of Discrete Tangent Estimators
	Surface Volume Estimation of Digitized Hyperplanes Using Weighted Local Configurations
	Rectification of the Chordal Axis Transform and a New Criterion for Shape Decomposition

	Reconstruction and Recognition
	Generalized Functionality for Arithmetic Discrete Planes
	Complexity Analysis for Digital Hyperplane Recognition in Arbitrary Fixed Dimension
	An Elementary Algorithm for Digital Line Recognition in the General Case
	Supercover Model and Digital Straight Line Recognition on Irregular Isothetic Grids
	Discrete Epipolar Geometry
	Local Point Configurations of Discrete Combinatorial Surfaces
	Reversible Polygonalization of a 3D Planar Discrete Curve: Application on Discrete Surfaces

	Uncertain Geometry
	Uncertain Geometry in Computer Vision
	Optimal Blurred Segments Decomposition in Linear Time
	Shape Preserving Digitization of Binary Images After Blurring

	Visualization
	A Low Complexity Discrete Radiosity Method
	A Statistical Approach for Geometric Smoothing of Discrete Surfaces
	Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Surfaces

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

